光电工程, 2017, 44 (3): 289, 网络出版: 2017-06-06   

表面等离子激元超构表面的研究进展

Recent progress on plasmonic metasurfaces
作者单位
1 深圳大学纳米光子学研究中心,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
2 东北大学信息科学与工程学院,沈阳 110819
引用该论文

林佼, 王大鹏, 司光远. 表面等离子激元超构表面的研究进展[J]. 光电工程, 2017, 44(3): 289.

Jiao Lin, Dapeng Wang, Guangyuan Si. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289.

参考文献

[1] Chen P Y, Soric J, Alù A. Invisibility and cloaking based on scattering cancellation[J]. Advanced Materials, 2012, 24(44): OP281-OP304.

[2] Ni Xingjie, Wong Zijing, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310- 1314.

[3] Liu Wei, Zhang Jianfa, Lei Bing, et al. Invisible nanowires with interfering electric and toroidal dipoles[J]. Optics Letters, 2015, 40(10): 2293-2296.

[4] Valentine J, Zhang Shuang, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376-379.

[5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

[6] Wu Aimin, Li Hao, Du Junjie, et al. Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts[J]. Nano Letters, 2015, 15(3): 2055-2060.

[7] Shalaev V. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1): 41-48.

[8] Genov D A, Zhang Shuang, Zhang Xiang. Mimicking celestial mechanics in metamaterials[J]. Nature Physics, 2009, 5(9): 687-692.

[9] Echtermeyer T J, Milana S, Sassi U, et al. Surface plasmon polariton graphene photodetectors[J]. Nano Letters, 2016, 16(1): 8-20.

[10] Demetriadou A, Kornyshev A A. Principles of nanoparticle imaging using surface plasmons[J]. New Journal of Physics, 2015, 17: 013041.

[11] Alizadeh M H, Reinhard B M. Enhanced optical chirality through locally excited surface plasmon polaritons[J]. ACS Photonics, 2015, 2(7): 942-949.

[12] Zhang Haochi, Fan Yifeng, Guo Jian, et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016, 3(1): 139- 146.

[13] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

[14] Weiner J. The physics of light transmission through subwavelength apertures and aperture arrays[J]. Reports on Progress in Physics, 2009, 72(6): 064401.

[15] Johns P, Yu Kuai, Devadas M S, et al. Role of resonances in the transmission of surface plasmon polaritons between nanostructures[J]. ACS Nano, 2016, 10(3): 3375-3381.

[16] Wang Qianjin, Li Jiaqi, Huang Chengping, et al. Enhanced optical transmission through metal films with rotation- symmetrical hole arrays[J]. Applied Physics Letters, 2005, 87(9): 091105.

[17] Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1-72.

[18] Zhao Yang, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J]. Nano Letters, 2013, 13(3): 1086-1091.

[19] Jiang Zhihao, Lin Lan, Ma Ding, et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates[J]. Scientific Reports, 2014, 4: 7511.

[20] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36.

[21] Yang Yuanmu, Kravchenko I I, Briggs D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 2014, 5: 5753.

[22] Paniagua-Domínguez R, Yu Yefeng, Miroshnichenko A E, et al. Generalized brewster effect in dielectric metasurfaces[J]. Nature Communications, 2016, 7: 10362.

[23] Dai Yanmeng, Ren Wenzhen, Cai Hongbing, et al. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7): 7465-7472.

[24] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Optics Letters, 2013, 38(4): 513-515.

[25] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[26] Gorodetski Y, Niv A, Kleiner V, et al. Observation of the spin-based plasmonic effect in nanoscale structures[J]. Physical Review Letters, 2008, 101(4): 043903.

[27] Bliokh K Y, Gorodetski Y, Kleiner V, et al. Coriolis effect in optics: unified geometric phase and spin-hall effect[J]. Physical Review Letters, 2008, 101(3): 030404.

[28] Shitrit N, Bretner I, Gorodetski Y, et al. Optical spin hall effects in plasmonic chains[J]. Nano Letters, 2011, 11(5): 2038-2042.

[29] Gorodetski Y, Shitrit N, Bretner I, et al. Observation of optical spin symmetry breaking in nanoapertures[J]. Nano Letters, 2009, 9(8): 3016-3019.

[30] Lin Jiao, Genevet P, Kats M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274.

[31] Tan P S, Yuan X C, Lin J, et al. Surface plasmon polaritons generated by optical vortex beams[J]. Applied Physics Letters, 2008, 92(11): 111108.

[32] Tan P S, Yuan X C, Lin J, et al. Analysis of surface plasmon interference pattern formed by optical vortex beams[J]. Optics Express, 2008, 16(22): 18451-18456.

[33] Zhan Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[34] Willner A E, Huang F, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

[35] Genevet P, Lin Jiao, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278.

[36] Du Luping, Kou Shanshan, Balaur E, et al. Broadband chirality-coded meta-aperture for photon-spin resolving[J]. Nature Communications, 2015, 6: 10051.

[37] Wang Xiaoli, Tang Zhiyong. Circular dichroism studies on plasmonic nanostructures[J]. Small, 2017, 13(1): 1601115.

[38] Deng Haidong, Chen Xingyu, Xu Yi, et al. Single protein sensing with asymmetric plasmonic hexamer via fano resonance enhanced two-photon luminescence[J]. Nanoscale, 2015, 7(48): 20405-20413.

[39] Neugebauer M, Woniak P, Bag A, et al. Polarization-controlled directional scattering for nanoscopic position sensing[J]. Nature Communications, 2016, 7: 11286.

[40] Wei Shibiao, Lei Ting, Du Luping, et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting[J]. Optics Express, 2015, 23(23): 30143-30148.

[41] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957- 961.

[42] Tame M S, McEnery K R, -zdemir K, et al. Quantum plasmonics[J]. Nature Physics, 2013, 9(6): 329-340.

[43] Tetienne J P, Lombard A, Simpson D A, et al. Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging[J]. Nano Letters, 2016, 16(1): 326-333.

[44] Ciraci C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072- 1074.

[45] Ye Jian, Wen Fangfang, Sobhani H, et al. Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS[J]. Nano Letters, 2012, 12(3): 1660- 1667.

[46] Urban M J, Zhou Chao, Duan Xiaoyang, et al. Optically resolving the dynamic walking of a plasmonic walker couple[J]. Nano Letters, 2015, 15(12): 8392-8396.

[47] Mühlenbernd H, Georgi P, Pholchai N, et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces[J]. ACS Photonics, 2016, 3(1): 124-129.

[48] O'Connor D, Ginzburg P, Rodríguez-Fortuo F J, et al. Spin-orbit coupling in surface plasmon scattering by nanostructures[J]. Nature Communications, 2014, 5: 5327.

[49] Gubbin C R, Martini F, Politi A, et al. Strong and coherent coupling between localized and propagating phonon polaritons [J]. Physical Review Letters, 2016, 116(24): 246402.

[50] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759.

[51] 赵泽宇, 蒲明博, 王彦钦, 等. 广义折反射定律[J]. 光电工程, 2017, 44(2): 129-139.

    Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129-139.

[52] Chen Houtong, Taylor A J, Yu Nanfang. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.

[53] Zhang Lei, Mei Shengtao, Huang Kun, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 2016, 4(6): 818-833.

[54] Lin Jiao, Dellinger J, Genevet P, et al. Cosine-gauss plasmon beam: a localized long-range nondiffracting surface wave[J]. Physical Review Letters, 2012, 109(9): 093904.

[55] Wei Shibiao, Lin Jiao, Wang Qian, et al. Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources[J]. Optics Letters, 2013, 38(7): 1182-1184.

[56] Wei Shibiao, Lin Jiao, Wang Rong, et al. Self-imaging generation of plasmonic void arrays[J]. Optics Letters, 2013, 38(15): 2783-2785.

[57] López-Tejeira F, Rodrigo S G, Martín-Moreno L, et al. Efficient unidirectional nanoslit couplers for surface plasmons[J]. Nature Physics, 2007, 3(5): 324-328.

[58] Baron A, Devaux E, Rodier J C, et al. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons[J]. Nano Letters, 2011, 11(10): 4207-4212.

[59] Lin Jiao, Mueller J P B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334.

[60] Lin Jiao, Wang Qian, Yuan Guanghui, et al. Mode-matching metasurfaces: coherent reconstruction and multiplexing of surface waves[J]. Scientific Reports, 2015, 5(1): 10529.

[61] Kou Shanshan, Yuan Guanghui, Wang Qian, et al. On-chip photonic fourier transform with surface plasmon polaritons[J]. Light: Science & Applications, 2016, 5: e16034.

林佼, 王大鹏, 司光远. 表面等离子激元超构表面的研究进展[J]. 光电工程, 2017, 44(3): 289. Jiao Lin, Dapeng Wang, Guangyuan Si. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!