光电工程, 2017, 44 (3): 289, 网络出版: 2017-06-06   

表面等离子激元超构表面的研究进展

Recent progress on plasmonic metasurfaces
作者单位
1 深圳大学纳米光子学研究中心,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
2 东北大学信息科学与工程学院,沈阳 110819
摘要
传统光学系统(如透镜、波片和全息片等)在光程远大于波长尺度的范围内实现对光波前的调控,其中振幅、相位和偏振的改变均依赖于光束反射、折射和衍射过程所累积的动态光程差。近年来涌现出的平面超薄光学系统因突破了传统设计的局限性而受到各个领域研究人员的青睐。本文着重介绍基于表面等离子激元的超表面在自由空间光场和局域光场波前调控方面的最新进展,阐述相关机理和具体应用,并结合国内外研究现状,分析现有技术存在的瓶颈且对该领域未来的发展趋势进行探讨和展望。
Abstract
Conventional optical systems (lenses, wave-plates and holograms) shape the wavefront of light within the range of an optical path that is much larger than the wavelength of light. The control of amplitude, phase and polarization of light depends on the dynamic optical path difference accumulated through the reflection, refrac-tion and diffraction. Recently, planar ultrathin optical components have attracted tremendous attention by remov-ing such traditional limitations. In this paper, we mainly review the recent progress of plasmonic metasurfaces with respect to wavefront shaping of free space and localized optical fields, including the fundamental mecha-nisms and applications. Both the drawbacks of existing technology and potential development are highlighted.
参考文献

[1] Chen P Y, Soric J, Alù A. Invisibility and cloaking based on scattering cancellation[J]. Advanced Materials, 2012, 24(44): OP281-OP304.

[2] Ni Xingjie, Wong Zijing, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310- 1314.

[3] Liu Wei, Zhang Jianfa, Lei Bing, et al. Invisible nanowires with interfering electric and toroidal dipoles[J]. Optics Letters, 2015, 40(10): 2293-2296.

[4] Valentine J, Zhang Shuang, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376-379.

[5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

[6] Wu Aimin, Li Hao, Du Junjie, et al. Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts[J]. Nano Letters, 2015, 15(3): 2055-2060.

[7] Shalaev V. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1): 41-48.

[8] Genov D A, Zhang Shuang, Zhang Xiang. Mimicking celestial mechanics in metamaterials[J]. Nature Physics, 2009, 5(9): 687-692.

[9] Echtermeyer T J, Milana S, Sassi U, et al. Surface plasmon polariton graphene photodetectors[J]. Nano Letters, 2016, 16(1): 8-20.

[10] Demetriadou A, Kornyshev A A. Principles of nanoparticle imaging using surface plasmons[J]. New Journal of Physics, 2015, 17: 013041.

[11] Alizadeh M H, Reinhard B M. Enhanced optical chirality through locally excited surface plasmon polaritons[J]. ACS Photonics, 2015, 2(7): 942-949.

[12] Zhang Haochi, Fan Yifeng, Guo Jian, et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016, 3(1): 139- 146.

[13] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

[14] Weiner J. The physics of light transmission through subwavelength apertures and aperture arrays[J]. Reports on Progress in Physics, 2009, 72(6): 064401.

[15] Johns P, Yu Kuai, Devadas M S, et al. Role of resonances in the transmission of surface plasmon polaritons between nanostructures[J]. ACS Nano, 2016, 10(3): 3375-3381.

[16] Wang Qianjin, Li Jiaqi, Huang Chengping, et al. Enhanced optical transmission through metal films with rotation- symmetrical hole arrays[J]. Applied Physics Letters, 2005, 87(9): 091105.

[17] Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1-72.

[18] Zhao Yang, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J]. Nano Letters, 2013, 13(3): 1086-1091.

[19] Jiang Zhihao, Lin Lan, Ma Ding, et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates[J]. Scientific Reports, 2014, 4: 7511.

[20] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36.

[21] Yang Yuanmu, Kravchenko I I, Briggs D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 2014, 5: 5753.

[22] Paniagua-Domínguez R, Yu Yefeng, Miroshnichenko A E, et al. Generalized brewster effect in dielectric metasurfaces[J]. Nature Communications, 2016, 7: 10362.

[23] Dai Yanmeng, Ren Wenzhen, Cai Hongbing, et al. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7): 7465-7472.

[24] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Optics Letters, 2013, 38(4): 513-515.

[25] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[26] Gorodetski Y, Niv A, Kleiner V, et al. Observation of the spin-based plasmonic effect in nanoscale structures[J]. Physical Review Letters, 2008, 101(4): 043903.

[27] Bliokh K Y, Gorodetski Y, Kleiner V, et al. Coriolis effect in optics: unified geometric phase and spin-hall effect[J]. Physical Review Letters, 2008, 101(3): 030404.

[28] Shitrit N, Bretner I, Gorodetski Y, et al. Optical spin hall effects in plasmonic chains[J]. Nano Letters, 2011, 11(5): 2038-2042.

[29] Gorodetski Y, Shitrit N, Bretner I, et al. Observation of optical spin symmetry breaking in nanoapertures[J]. Nano Letters, 2009, 9(8): 3016-3019.

[30] Lin Jiao, Genevet P, Kats M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274.

[31] Tan P S, Yuan X C, Lin J, et al. Surface plasmon polaritons generated by optical vortex beams[J]. Applied Physics Letters, 2008, 92(11): 111108.

[32] Tan P S, Yuan X C, Lin J, et al. Analysis of surface plasmon interference pattern formed by optical vortex beams[J]. Optics Express, 2008, 16(22): 18451-18456.

[33] Zhan Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[34] Willner A E, Huang F, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

[35] Genevet P, Lin Jiao, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278.

[36] Du Luping, Kou Shanshan, Balaur E, et al. Broadband chirality-coded meta-aperture for photon-spin resolving[J]. Nature Communications, 2015, 6: 10051.

[37] Wang Xiaoli, Tang Zhiyong. Circular dichroism studies on plasmonic nanostructures[J]. Small, 2017, 13(1): 1601115.

[38] Deng Haidong, Chen Xingyu, Xu Yi, et al. Single protein sensing with asymmetric plasmonic hexamer via fano resonance enhanced two-photon luminescence[J]. Nanoscale, 2015, 7(48): 20405-20413.

[39] Neugebauer M, Woniak P, Bag A, et al. Polarization-controlled directional scattering for nanoscopic position sensing[J]. Nature Communications, 2016, 7: 11286.

[40] Wei Shibiao, Lei Ting, Du Luping, et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting[J]. Optics Express, 2015, 23(23): 30143-30148.

[41] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957- 961.

[42] Tame M S, McEnery K R, -zdemir K, et al. Quantum plasmonics[J]. Nature Physics, 2013, 9(6): 329-340.

[43] Tetienne J P, Lombard A, Simpson D A, et al. Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging[J]. Nano Letters, 2016, 16(1): 326-333.

[44] Ciraci C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072- 1074.

[45] Ye Jian, Wen Fangfang, Sobhani H, et al. Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS[J]. Nano Letters, 2012, 12(3): 1660- 1667.

[46] Urban M J, Zhou Chao, Duan Xiaoyang, et al. Optically resolving the dynamic walking of a plasmonic walker couple[J]. Nano Letters, 2015, 15(12): 8392-8396.

[47] Mühlenbernd H, Georgi P, Pholchai N, et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces[J]. ACS Photonics, 2016, 3(1): 124-129.

[48] O'Connor D, Ginzburg P, Rodríguez-Fortuo F J, et al. Spin-orbit coupling in surface plasmon scattering by nanostructures[J]. Nature Communications, 2014, 5: 5327.

[49] Gubbin C R, Martini F, Politi A, et al. Strong and coherent coupling between localized and propagating phonon polaritons [J]. Physical Review Letters, 2016, 116(24): 246402.

[50] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759.

[51] 赵泽宇, 蒲明博, 王彦钦, 等. 广义折反射定律[J]. 光电工程, 2017, 44(2): 129-139.

    Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129-139.

[52] Chen Houtong, Taylor A J, Yu Nanfang. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.

[53] Zhang Lei, Mei Shengtao, Huang Kun, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 2016, 4(6): 818-833.

[54] Lin Jiao, Dellinger J, Genevet P, et al. Cosine-gauss plasmon beam: a localized long-range nondiffracting surface wave[J]. Physical Review Letters, 2012, 109(9): 093904.

[55] Wei Shibiao, Lin Jiao, Wang Qian, et al. Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources[J]. Optics Letters, 2013, 38(7): 1182-1184.

[56] Wei Shibiao, Lin Jiao, Wang Rong, et al. Self-imaging generation of plasmonic void arrays[J]. Optics Letters, 2013, 38(15): 2783-2785.

[57] López-Tejeira F, Rodrigo S G, Martín-Moreno L, et al. Efficient unidirectional nanoslit couplers for surface plasmons[J]. Nature Physics, 2007, 3(5): 324-328.

[58] Baron A, Devaux E, Rodier J C, et al. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons[J]. Nano Letters, 2011, 11(10): 4207-4212.

[59] Lin Jiao, Mueller J P B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334.

[60] Lin Jiao, Wang Qian, Yuan Guanghui, et al. Mode-matching metasurfaces: coherent reconstruction and multiplexing of surface waves[J]. Scientific Reports, 2015, 5(1): 10529.

[61] Kou Shanshan, Yuan Guanghui, Wang Qian, et al. On-chip photonic fourier transform with surface plasmon polaritons[J]. Light: Science & Applications, 2016, 5: e16034.

林佼, 王大鹏, 司光远. 表面等离子激元超构表面的研究进展[J]. 光电工程, 2017, 44(3): 289. Jiao Lin, Dapeng Wang, Guangyuan Si. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!