中国激光, 2021, 48 (8): 0802001, 网络出版: 2021-04-13   

超快激光纳米线连接技术研究进展 下载: 1745次特邀综述

Research Progress of Ultrafast Laser-Induced Nanowires Joining Technology
作者单位
1 瑞士联邦材料科学与技术研究所, 迪本多夫 8600, 瑞士
2 清华大学机械工程系, 北京 100084
3 北京航空航天大学机械工程及自动化学院, 北京 100191
引用该论文

林路禅, 邢松龄, 霍金鹏, 肖宇, 彭鹏, 沈道智, 刘磊, 邹贵生. 超快激光纳米线连接技术研究进展[J]. 中国激光, 2021, 48(8): 0802001.

Luchan Lin, Songling Xing, Jinpeng Huo, Yu Xiao, Peng Peng, Daozhi Shen, Lei Liu, Guisheng Zou. Research Progress of Ultrafast Laser-Induced Nanowires Joining Technology[J]. Chinese Journal of Lasers, 2021, 48(8): 0802001.

参考文献

[1] Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J]. Nature, 2001, 409(6816): 66-69.

[2] Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths[J]. Science, 2016, 354(6308): 99-102.

[3] Cao Q, Tersoff J, Farmer D B, et al. Carbon nanotube transistors scaled to a 40-nanometer footprint[J]. Science, 2017, 356(6345): 1369-1372.

[4] ZhouY. Microjoining and nanojoining[M]. Cambridge: Woodhead Publishing Limited, 2008: 545- 576.

[5] Zhou Y, Hu A. From microjoining to nanojoining[J]. The Open Surface Science Journal, 2011, 3(1): 32-41.

[6] Hu A M, Janczak-Rusch J, Sano T. Joining technology innovations at the macro, micro, and nano levels[J]. Applied Sciences, 2019, 9(17): 3568.

[7] Chen C X, Yan L J, Kong E S W, et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 2006, 17(9): 2192-2197.

[8] Peng Y, Cullis T, Inkson B. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder[J]. Nano Letters, 2009, 9(1): 91-96.

[9] Liu L, Shen D Z, Zou G S, et al. Cold welding of Ag nanowires by large plastic deformation[J]. Scripta Materialia, 2016, 114: 112-116.

[10] Ye H K, Gu Z Y, Yu T, et al. Integrating nanowires with substrates using directed assembly and nanoscale soldering[J]. IEEE Transactions on Nanotechnology, 2006, 5(1): 62-66.

[11] Celano T A, Hill D J, Zhang X, et al. Capillarity-driven welding of semiconductor nanowires for crystalline and electrically ohmic junctions[J]. Nano Letters, 2016, 16(8): 5241-5246.

[12] Xu S, Tian M, Wang J, et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam[J]. Small, 2005, 1(12): 1221-1229.

[13] Bo A, Alarco J, Zhu H Y, et al. Nanojoint formation between ceramic titanate nanowires and spot melting of metal nanowires with electron beam[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9143-9151.

[14] Dhal S, Chatterjee S, Sarkar S, et al. Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation[J]. Nanotechnology, 2015, 26(23): 235601.

[15] Rajbhar M K, Möller W, Satpati B, et al. Broad beam-induced fragmentation and joining of tungsten oxide nanorods: implications for nanodevice fabrication and the development of fusion reactors[J]. ACS Applied Nano Materials, 2020, 3(9): 9064-9075.

[16] Khan M R, Rauf Khan M A, Ahmad I, et al. Joining of individual silicon carbide nanowires via proton beam irradiation[J]. Current Nanoscience, 2018, 14(5): 354-359.

[17] Zhang L Q, Tang Y S, Peng Q M, et al. Ceramic nanowelding[J]. Nature Communications, 2018, 9(1): 1-7.

[18] Dai S W, Li Q, Liu G P, et al. Laser-induced single point nanowelding of silver nanowires[J]. Applied Physics Letters, 2016, 108(12): 121103.

[19] Li Q, Liu G P, Yang H B, et al. Optically controlled local nanosoldering of metal nanowires[J]. Applied Physics Letters, 2016, 108(19): 193101.

[20] Liu G P, Li Q, Qiu M. Sacrificial solder based nanowelding of ZnO nanowires[J]. Journal of Physics: Conference Series, 2016, 680: 012027.

[21] Huang J X, Kaner R B. Flash welding of conducting polymer nanofibres[J]. Nature Materials, 2004, 3(11): 783-786.

[22] Garnett E C, Cai W, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 2012, 11(3): 241-249.

[23] Nian Q, Saei M, Xu Y, et al. Crystalline nanojoining silver nanowire percolated networks on flexible substrate[J]. ACS Nano, 2015, 9(10): 10018-10031.

[24] González-Rubio G, González-Izquierdo J, Bañares L, et al. Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods[J]. Nano Letters, 2015, 15(12): 8282-8288.

[25] Salmon A R, Kleemann M E, Huang J Y, et al. Light-induced coalescence of plasmonic dimers and clusters[J]. ACS Nano, 2020, 14(4): 4982-4987.

[26] 孙轲, 孙盛芝, 邱建荣. 超短脉冲激光焊接非金属材料研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111422.

    Sun K, Sun S Z, Qiu J R. Research progress on ultrashort pulsed laser welding of non-metallic materials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111422.

[27] 于淼, 黄婷, 肖荣诗. 长焦距绿光飞秒激光玻璃焊接[J]. 中国激光, 2020, 47(9): 0902005.

    Yu M, Huang T, Xiao R S. Long focal length green femtosecond laser welding of glass[J]. Chinese Journal of Lasers, 2020, 47(9): 0902005.

[28] 张国栋, 程光华, 张伟. 超快激光选区焊接技术研究进展[J]. 中国光学, 2020, 13(6): 1209-1223.

    Zhang G D, Cheng G H, Zhang W. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 2020, 13(6): 1209-1223.

[29] Theogene B, Huang C C, Cheng Y, et al. Temperature monitoring for femtosecond laser welded interconnection of MWCNT regular structure on PET substrate[J]. Ferroelectrics, 2020, 563(1): 62-76.

[30] MaierS. Plasmonics: fundamentals and applications[M]. Springer Science & Business Media, 2007: 21- 34.

[31] Huang H, Liu L, Peng P, et al. Controlled joining of Ag nanoparticles with femtosecond laser radiation[J]. Journal of Applied Physics, 2012, 112(12): 123519.

[32] Herrmann L O, Valev V K, Tserkezis C, et al. Threading plasmonic nanoparticle strings with light[J]. Nature Communications, 2014, 5: 4568.

[33] Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat[J]. Laser & Photonics Reviews, 2013, 7(2): 171-187.

[34] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 2009, 94(15): 153109.

[35] Jauffred L, Samadi A, Klingberg H, et al. Plasmonic heating of nanostructures[J]. Chemical Reviews, 2019, 119(13): 8087-8130.

[36] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 2005, 127(10): 1167-1173.

[37] Ren X Y, Li X, Wei F Q, et al. Thermal field simulation of Ag nanoparticles induced by femtosecond laser[J]. Integrated Ferroelectrics, 2020, 208(1): 128-137.

[38] Hu A, Zhou Y, Duley W W. Femtosecond laser-induced nanowelding: fundamentals and applications[J]. The Open Surface Science Journal, 2011, 3(1): 42-49.

[39] Kuppe C, Rusimova K R, Ohnoutek L, et al. “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures[J]. Advanced Optical Materials, 2020, 8(1): 2070001.

[40] Bell A P, Fairfield J A, McCarthy E K, et al. Quantitative study of the photothermal properties of metallic nanowire networks[J]. ACS Nano, 2015, 9(5): 5551-5558.

[41] Sanchot A, Baffou G, Marty R, et al. Plasmonic nanoparticle networks for light and heat concentration[J]. ACS Nano, 2012, 6(4): 3434-3440.

[42] Liu L, Peng P, Hu A M, et al. Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires[J]. Applied Physics Letters, 2013, 102(7): 073107.

[43] Ghenuche P, Cherukulappurath S, Taminiau T H, et al. Spectroscopic mode mapping of resonant plasmon nanoantennas[J]. Physical Review Letters, 2008, 101(11): 116805.

[44] Liang T S, Shi P P, Su S Q, et al. Near-perfect healing natures of silver five-fold twinned nanowire[J]. Computational Materials Science, 2020, 183: 109796.

[45] Lin L C, Liu L, Peng P, et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 2016, 27(12): 125201.

[46] Ding S, Tian Y H, Jiang Z, et al. Joining of silver nanowires by femtosecond laser irradiation method[J]. Materials Transactions, 2015, 56(7): 981-983.

[47] Hu A, Deng G L, Courvoisier S, et al. Femtosecond laser induced surface melting and nanojoining for plasmonic circuits[J]. Proceedings of SPIE, 2013, 8809: 880907.

[48] Wan H, Gui C Q, Chen D, et al. Scattering force and heating effect in laser-induced plasmonic welding of silver nanowire junctions[J]. Applied Optics, 2020, 59(7): 2186-2191.

[49] Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials, 2014, 26(33): 5808-5814.

[50] Deng Y B, Bai Y F, Yu Y C, et al. Laser nanojoining of copper nanowires[J]. Journal of Laser Applications, 2019, 31(2): 022414.

[51] Li Y Y, Li Y T, Feng L L, et al. Metal alloy nanowire joining induced by femtosecond laser heating: a hybrid atomistic-continuum interpretation[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119287.

[52] Lin L C, Zou G S, Liu L, et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 2016, 108(20): 203107.

[53] Xiao M, Lin L, Xing S, et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 2020, 127(18): 184901.

[54] Xing S L, Lin L C, Zou G S, et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 2019, 115(10): 103101.

[55] Lin L C, Liu L, Musselman K, et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 2016, 26(33): 5979-5986.

[56] Xing S L, Lin L C, Huo J P, et al. Plasmon-induced heterointerface thinning for Schottky barrier modification of core/shell SiC/SiO2 nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9326-9332.

[57] Ha J, Lee B J, Hwang D J, et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. RSC Advances, 2016, 6(89): 86232-86239.

[58] Hu Y W, Liang C, Sun X Y, et al. Enhancement of the conductivity and uniformity of silver nanowire flexible transparent conductive films by femtosecond laser-induced nanowelding[J]. Nanomaterials, 2019, 9(5): 673.

[59] Lin L C, Huo J P, Peng P, et al. Contact engineering of single core/shell SiC/SiO2 nanowire memory unit with high current tolerance using focused femtosecond laser irradiation[J]. Nanoscale, 2020, 12(9): 5618-5626.

[60] Yu Y C, Deng Y B, Al Hasan M A, et al. Femtosecond laser-induced non-thermal welding for a single Cu nanowire glucose sensor[J]. Nanoscale Advances, 2020, 2(3): 1195-1205.

林路禅, 邢松龄, 霍金鹏, 肖宇, 彭鹏, 沈道智, 刘磊, 邹贵生. 超快激光纳米线连接技术研究进展[J]. 中国激光, 2021, 48(8): 0802001. Luchan Lin, Songling Xing, Jinpeng Huo, Yu Xiao, Peng Peng, Daozhi Shen, Lei Liu, Guisheng Zou. Research Progress of Ultrafast Laser-Induced Nanowires Joining Technology[J]. Chinese Journal of Lasers, 2021, 48(8): 0802001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!