光子学报, 2013, 42 (8): 902, 网络出版: 2013-09-25   

新型阿达玛变换光谱仪

A New Kind of Hadamard Transform Spectrometer
作者单位
1 中国科学院长春光学精密机械与物理研究所, 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了克服经典光谱仪中由于入射狭缝的遮挡导致的系统内光通量很小的缺点,提出了一种新型阿达玛变换光谱仪的设计理念. 给出了以柱面镜来整形光束的方法,利用理论计算得出含有数字微镜阵列光谱仪的光谱分辨能力和像元分辨能力,确定了该类光谱仪的极限分辨率.根据几何光学成像理论,提出一种增大成像透镜焦距的优化方案,可以提高光谱分辨率,并且更有益于机械装调. 实验结果表明,该阿达玛变换光谱仪具有高光通量、提高5倍的信噪比、较小的光谱带宽(3.5 nm)等特点,可为微弱光谱信号的检测提供便利条件;光谱仪选择的近红外探测器无需制冷,降低了阿达玛变换光谱仪的制作成本,具有更强的市场竞争力.
Abstract
In order to overcome the shortcoming that the luminous flux of the classical spectrometer is small due to the occlusion of the entrance slit, a design concept of the new kind of Hadamard transform spectrometer is proposed. A method of shaping the beam by a cylindrical lens is given. Using theoretical calculations of the spectral resolution ability and the pixel resolution ability of the spectrometer, containing a digital micromirror array, he limit class of the spectrometer resolution can be determined. Based on the geometric theory of optical imaging, an optimization program of the more focal length of the imaging lens is proposed, which is able to obtain the higher spectral resolution and the more beneficial to the mechanical alignment. The advantages of the new Hadamard transform spectrometer are that it has a high luminous flux, the signaltonoise ratio is 5 times more than that of traditions, and the smaller spectral bandwidth is 3.5 nm, providing convenient conditions for the detection of weak spectral signal. In addition, the nearinfrared detector selected by the spectrometer needs no refrigeration, which will cut the production costs of the Hadamard transform spectrometer, with a stronger market competitiveness.
参考文献

[1] 褚小立, 王艳斌, 陆婉珍. 近红外光谱仪国内外现状与展望[J]. 分析仪器, 2007(4): 1-4.

    CHU Xiaoli, WANG Yanbin, LU Wanzhen. Present situation and prospect of near infrared spectrometer in china and abroad[J]. Analysis Instruments, 2007(4): 1-4.

[2] 张军, 陈星旦, 朴仁官, 等. 用于食品成分分析的双探测器近红外光谱仪[J]. 光学精密工程, 2008, 16(6): 986-991.

    ZHANG Jun, CHEN Xingdan, PIAO Renguan, et al. Near infrared spectrometer with double detectors for food component analysis[J]. Optics and Precision Engineering, 2008, 16(6): 986-991.

[3] 苏雷龙,蒋书波,程明霄,等. 气体检测中基于MEMS 技术的近红外光谱仪设计[J]. 传感器与微系统, 2011, 30(10): 120-122.

    SU Leilong,JIANG Shubo,CHENG Mingxiao,et al. Design on NIR spectrometer based on MEMS technology for gas detecting[J]. Transducer and Microsystem Technologies, 2011, 30(10): 120-122.

[4] 王智宏, 林君, 武子玉, 等. 便携式近红外光谱矿物分析仪分光系统研制[J]. 岩矿测试, 2005, 24(1): 59-61.

    WANG Zhihong, LIN Jun, WU Ziyu, et al. Development of spectrometric system of the portable mineral NIR spectrometer[J]. Rock and Mineral Analysis, 2005, 24(1): 59-61.

[5] 孔延梅, 梁静秋, 梁中翥, 等. 调制光谱仪的微型化研究进展[J]. 半导体光电, 2008, 29(1): 1-5.

    KONG Yanmei, LIANG Jingqiu, LIANG Zhongzhu, et al. Developments of the micro modulating spectrometers[J]. Semiconductor Optoelectronics, 2008, 29(1): 1-5.

[6] 孔延梅, 梁静秋, 王波, 等. 新型空间调制微型傅里叶变换光谱仪的设计与仿真[J]. 光谱学与光谱分析, 2009, 29(4): 1142-1146.

    KONG Yanmei, LIANG Jingqiu, WANG Bo, et al. The investigation and simulation of a novel spatially modulated microfourier transform spectrometer[J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 1142-1146.

[7] 金玉希, 黄梅珍, 施嫚嫚. 傅立叶变换光谱仪现状及其微型化进展[J]. 现代科学仪器, 2010(3):131-137.

    JIN Yuxi, HUANG Meizhen, SHI Manman. Fourier transform spectrometer status and its progress in miniaturization[J]. Modern Scientific Instruments, 2010(3): 131-137.

[8] 薛庆生, 陈伟. 改进的宽谱段车尔尼特纳光谱成像系统设计[J]. 光学 精密工程, 2012, 20(2): 233-240.

    XUE Qingsheng, CHEN Wei. Design of modified Czernyturner spectral imaging system with wide spectral region[J]. Optics and Precision Engineering, 2012, 20(2): 233-240.

[9] 张智海, 莫祥霞, 郭媛君, 等. 微型MOEMS 阿达玛变换近红外光谱仪[J]. 光谱学与光谱分析, 2011, 31(7): 1975-1979.

    ZHANG Zhihai, MUO Xiangxia, GUO Yuanjun, et al. Micro Hadamard transform nearinfrared spectrometer[J]. Spectroscopy and Spectral Analysis, 2011, 31(7): 1975-1979.

[10] MO Xiangxia, WEN Zhiyu, ZHANG Zhihai, et al. Design and experiment of digital mcromirror spectrometer optical system[J]. Acta Photonica Sinica, 2011, 40(9): 1356-1360.

[11] 刘佳, 陈奋飞, 廖乘胜, 等. 基于数字微镜技术的阿达玛变换近红外光谱仪[J]. 光谱学与光谱分析, 2011, 31(10): 2874-2878.

    LIU Jia, CHEN Fenfei, LIAO Chengsheng, et al. A digital micromirror devicebased Hadamard transform near infrared spectrometer[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2874-2878.

[12] 陈伟民, 胡松, 温志渝, 等. 微小型光谱仪光谱带宽及象元分辨力的讨论[J]. 压电与声光, 2000, 22(3): 149-151.

    CHEN Weimin, HU Song, WEN Zhiyu, et al. The theoretical study on the spectral width and resolution of the minispectrometer[J]. Piezoelectrics & Acousto Optics, 2000, 22(3): 149-151.

党博石, 刘华, 王晓朵, 许家林, 卢振武. 新型阿达玛变换光谱仪[J]. 光子学报, 2013, 42(8): 902. DANG Boshi, LIU Hua, WANG Xiaoduo, XU Jialin, LU Zhenwu. A New Kind of Hadamard Transform Spectrometer[J]. ACTA PHOTONICA SINICA, 2013, 42(8): 902.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!