光学学报, 2016, 36 (11): 1117003, 网络出版: 2016-11-08   

双调制多波长旋光法检测人工前房内葡萄糖的浓度

Dual-Modulation Multi-Wavelength Polarimetry for Monitoring Glucose Concentration in Anterior Chamber of Eye Phantoms
作者单位
1 电子科技大学光电信息学院, 四川 成都 610054
2 德克萨斯州农工大学生物医学工程学院光学生物传感实验室, 德克萨斯州 大学城 77843, 美国
摘要
光学旋光法是一种无创血糖检测技术,通过测量眼前房水内葡萄糖浓度来确定体内血糖浓度水平。人眼运动引起的实时变化的双折射是实现旋光法无创血糖测量的主要限制因素之一。设计了实时、闭环、双调制多波长偏振系统来测量人工前房内的葡萄糖浓度,人工前房由离体角膜固定在人工眼房上构成。采用眼耦合装置使光直线穿过眼前房从而避免了空气与角膜之间折射率不匹配引起的光线弯曲。存在运动引起的双折射时,采用双波长旋光系统测量眼模型内的葡萄糖浓度,两次预测葡萄糖浓度的标准差分别为18.9 mg/dL和15.2 mg/dL,表明该系统具有降低活体角膜实变双折射的潜力,有利于实现与血糖浓度相关的眼前房水内葡萄糖浓度的精确测量。
Abstract
Optical polarimetry is a noninvasive glucose monitoring technique which can be potentially used to ascertain blood glucose levels through measuring the aqueous humor glucose levels in the anterior chamber of the eye. One major limitation of the polarimetric approach as a means to noninvasively measure glucose levels is time-variant corneal birefringence caused by motion artifact. We design a real-time, closed-loop, dual-modulation, multi-wavelength polarimetric system for glucose measurement by using an isolated human cornea ex vivo clamped on an artificial anterior chamber. Eye coupling devices are utilized to prevent bending of the light through the anterior chamber due to index mismatch between air and aqueous humor barrier. The polarimetric setup for glucose measurement ex vivo is presented and the system predicts the glucose concentration with standard error of 18.9 mg/dL and 15.2 mg/dL in the presence of birefringence with motion at two runs. The results indicate that polarimetry can effectively be used to minimize the effect of corneal birefringence in vivo, and helps to accurately measure glucose concentration in the aqueous humor of the eye that is correlated with blood glucose levels.
参考文献

[1] International Diabetes Federation. Diabetes Atlas (6th edition) [R/OL]. [2016-07-04]. http:∥www.idf.org/worlddiabetesday/toolkit/gp/facts-figures.

[2] Davidson M B. Diabetes mellitus: diagnosis and treatment[M]. 3rd edition. New York: Churchill Livingstone, 1991: 231-232.

[3] The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin-dependent diabetes mellitus[J]. The New England Journal of Medicine, 1993, 329: 977-986.

[4] Ewald N, Hardt P D. Diagnosis and treatment of diabetes mellitus in chronic pancreatitis[J]. World Journal of Gastroenterol, 2013, 19(42): 7276-7281.

[5] American Diabetes Association. Clinical practice recommendations[J]. Diabetes Care, 1997, 20(1): S1-S70.

[6] McNichols R J, Coté G L. Optical glucose sensing in biological fluids: an overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16.

[7] Khalil O S. Spectroscopic and clinical aspects of noninvasive glucose measurements[J]. Clinical Chemistry, 1999, 45(2): 165-177.

[8] Wróbel M S. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization[J]. Materials Science and Engineering, 2015, 104: 012036.

[9] Malin S F, Ruchti T L, Blank T B, et al. Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy[J]. Clinical Chemistry, 1999, 45(9): 1651-1658.

[10] 吴春阳, 卢启鹏, 丁海泉, 等. 利用人体组织液进行近红外无创血糖测量[J]. 光学学报, 2013, 33(11): 1117001.

    Wu Chunyang, Lu Qipeng, Ding Haiquan, et al. Noninvasive blood glucose sensing with near-infrared spectroscopy based on interstitial fluid[J]. Acta Optica Sinica, 2013, 33(11): 1117001.

[11] Wickramasinghe Y, Yang Y, Spencer S A. Current problems and potential techniques in in-vivo glucose monitoring[J]. Journal of Fluorescence, 2004, 14(5): 513-520.

[12] Zeng L M, Liu G D, Yang D W, et al. Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection[C]. SPIE, 2008, 7280: 72802F.

[13] Su Y, Meng Z, Wang L Z, et al. Effect of temperature on noninvasive blood glucose monitoring in vivo using optical coherence tomography[J]. Chinese Optics Letters, 2014, 12(11): 111701.

[14] 苏亚, 孟卓, 王龙志, 等. 光学相干层析无创血糖检测中相关性分析及标定[J]. 中国激光, 2014, 41(7): 0704002.

    Su Ya, Meng Zhuo, Wang Longzhi, et al. Correlation analysis and calibration of noninvasive blood glucose monitoring in vivo with optical coherence tomography[J]. Chinese J Lasers, 2014, 41(7): 0704002.

[15] 朱越, 高万荣, 郭英呈. 提高全场光学相干层析系统成像质量的方法[J]. 光学学报, 2015, 35(5): 0517001.

    Zhu Yue, Gao Wanrong, Guo Yingcheng. A method of improving imaging quality of full-field optical coherence tomography[J]. Acta Optica Sinica, 2015, 35(5): 0517001.

[16] Rabinovitch B, March W F, Adams R L. Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotation[J]. Diabetes Care, 1982, 5(3): 254-258.

[17] March W F, Rabinovitch B, Adams R L. Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens[J]. Diabetes Care, 1982, 5(3): 259-265.

[18] Cameron B D, Coté G L. Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach[J]. IEEE Transactions on Biomedical Engineering, 1997, 44(12): 1221-1227.

[19] 余振芳, 邱琪, 郭勇. 双调制光学偏振法葡萄糖浓度检测[J]. 光学学报, 2016, 36(1): 0117001.

    Yu Zhenfang, Qiu Qi, Guo Yong. Dual modulation optical polarimetry for glucose monitoring[J]. Acta Optica Sinica, 2016, 36(1): 0117001.

[20] Cameron B D. Noninvasive birefringence compensated sensing polarimeter: US7245952[P]. 2007-07-17.

[21] March W, Engerman R, Rabinovitch, B. Optical monitor of glucose[J]. Transations - American Society for Artificial Internal Organs, 1979, 25: 28-31.

[22] Coté G L, Fox M D, Northrop R B. Noninvasive optical polarimetric glucose sensing using a true phase measurement technique[J]. IEEE Transactions on Biomedical Engineering, 1992, 39(7): 752-756.

[23] Malik B H, Coté G L. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring[J]. Journal of Biomedical Optics, 2010, 15(1): 017002.

[24] Malik B H, Pirnstill C W, Coté G L. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms[J]. Journal of Biomedical Optics, 2013, 18(1): 017007.

[25] Malik B H, Coté G L. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor[J]. Journal of Biomedical Optics, 2010, 15(3): 037012.

[26] Malik B H, Coté G L. Characterizing dual wavelength polarimetry through the eye for monitoring glucose[J]. Biomedical Optics Express, 2010, 1(5): 1247-1258.

[27] Wan Q J, Coté G L, Dixon J B. Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence[J]. Journal of Biomedical Optics, 2005, 10(2): 024029.

[28] Pirnstill C W, Malik B H, Gresham V C, et al. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion[J]. Diabetes Technology & Therapeutics, 2012, 14(9): 819-827.

[29] Yu Z F, Pirnstill C W, Coté G L. A closed-loop dual-modulation multi-spectral polarimeter for glucose monitoring[C]. SPIE, 2016, 9715: 97150U.

[30] McMurry J. Organic Chemistry[M]. 3rd ed. Pacific Grove: Brooks/Cole Publishing Co., 1992: 284-325.

[31] Knighton R W, Huang X R, Cavuoto L A. Corneal birefringence mapped by scanning laser polarimetry[J]. Optics Express, 2008, 16(18): 13738-13751.

[32] Knighton R W. Spectral dependence of corneal birefringence at visible wavelengths[J]. Investigative Ophthalmology Visual Science, 2002, 43(13): 152.

[33] Irsch K, Gramatikov B, Wu Y K, et al. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection[J]. Biomedical Optics Express, 2011, 2(7): 1955-1968.

[34] Donohue D J, Stoyanov B J, McCally R L, et al. Numerical modeling of the cornea’s lamellar structure and birefringence properties[J]. Journal of the Optical Society of America A, 1995, 12(7): 1425-1438.

[35] van Blokland G J, Verhelst S C. Corneal polarization in the living human eye explained with a biaxial model[J]. Journal of the Optical Society of America A, 1987, 4(1): 82-90.

[36] Winkler A M, Bonnema G T, Barton J K, Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry[J]. Applied Optics, 2011, 50(17): 2719-2731.

余振芳, 邱琪, 张天航, 郭勇. 双调制多波长旋光法检测人工前房内葡萄糖的浓度[J]. 光学学报, 2016, 36(11): 1117003. Yu Zhenfang, Qiu Qi, Zhang Tianhang, Guo Yong. Dual-Modulation Multi-Wavelength Polarimetry for Monitoring Glucose Concentration in Anterior Chamber of Eye Phantoms[J]. Acta Optica Sinica, 2016, 36(11): 1117003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!