中国激光, 2016, 43 (10): 1010006, 网络出版: 2016-10-12   

时分复用光纤光栅系统的边缘滤波解调与标定

Edge Filtering Demodulation and Calibration of Fiber Grating System Based on Time-Division Multiplexing
作者单位
西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
摘要
为实现高空间分辨率和高测量精度的准分布式光纤光栅应变传感系统,研究了基于时分复用光纤光栅传感系统的解调和标定方法。将波分复用和时分复用技术相结合,得到两个低反射率光纤光栅的应变灵敏度分别为33.40 με/mV和38.47 με/mV,标定的非线性误差为2.8%。基于光纤光栅光谱边缘滤波技术,构建时分复用光纤光栅应变传感系统,提出复用光纤光栅应变的交叉传感解调算法,实验测试并解调两个光纤光栅的交叉传感数据。实验分析表明,单次测量传感系统的最大误差为18 με, 应变量大于100 με时的传感相对误差小于5%,满量程600 με的引用误差小于2%。
Abstract
To achieve the quasi-distributed fiber grating sensing system with high spatial resolution and high measurement accuracy, the demodulation and calibration methods for the fiber grating sensing system are studied based on the time-division multiplexing technology. By combining the wavelength-division multiplexing technique with the time-division multiplexing technique, the obtained strain sensitivities of the two fiber gratings with a low reflectivity are 33.40 με/mV and 38.47 με/mV, and the non-linear error of the calibration is 2.8%. A time-division multiplexing fiber grating strain sensing system is established based on the edge filtering technique of the fiber grating spectrum. The cross-sensing demodulating algorithm of the multiplexing fiber grating strain is derived, and we test and demodulate the cross-sensing data of the two fiber gratings by experiments. The results show that the maximum error of the sensing system for a single measurement is 18 με, the relative error is less than 5% under the condition that the strain is more than 100 με, and the quoted error is less than 2% when the full scale is 600 με.
参考文献

[1] Wang X C, Yan Z J,Wang F, et al. An OTDR and gratings assisted multifunctional fiber sensing system[J]. IEEE Sensors Journal, 2015, 15(8): 4660-4666.

[2] Pahl C, Mazle H A B, Supriyanto E. Design of virtual instrument for automatic temperature visualization in magnetic fields using LabVIEW in combination with fiber-optical temperature measurement[C]. 6th International Conference on Automation, Robotics and Applications, 2015: 393-399.

[3] Yu Y L, Zhao H X. A novel demodulation scheme for fiber Bragg grating sensor system[J]. IEEE Photonics Technology Letters, 2005, 17(1): 166-168.

[4] 朱珠, 梁大开, 孙红兵. 基于双长周期光纤光栅边缘滤波的光纤布拉格光栅解调系统[J]. 中国激光, 2013, 40(3): 0305001.

    Zhu Zhu, Liang Dakai, Sun Hongbing. Double-edged filter wavelength demodulation system for fiber Bragg gratings based on long period fiber grating[J]. Chinese J Lasers, 2013, 40(3): 0305001.

[5] 赛耀樟, 姜明顺, 隋青美, 等. 基于FBG传感网络和时间反转聚焦成像方法的声发射定位技术研究[J]. 中国激光, 2014, 41(8): 0805003.

    Sai Yaozhang, Jiang Mingshun, Sui Qingmei, et al. Acoustic emission location technology research based on FBG sensor network and time reversal focusing imaging method[J]. Chinese J Lasers, 2014, 41(8): 0805003.

[6] 乔学光, 丁峰, 贾振安, 等. 高精度准分布式光纤光栅地震检波解调系统的研究[J]. 物理学报, 2011, 60(7): 074221.

    Qiao Xueguang, Ding Feng, Jia Zhen′an, et al. High-accuracy quasi-distributed optical fiber Bragg grating seismic demodulation system[J]. Acta Physica Sinica, 2011, 60(7): 074221.

[7] 李政颖, 孙文丰, 王洪海. 基于光频域反射技术的超弱反射光纤光栅传感技术研究[J]. 光学学报, 2015, 35(8): 0806003.

    Li Zhengying, Sun Wenfeng, Wang Honghai. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology[J]. Acta Optica Sinica, 2015, 35(8): 0806003.

[8] Jin J, Lin S, Song N F. Irradiation effect on strain sensitivity coefficient of strain sensing fiber Bragg gratings[J]. Chinese Physics B, 2014, 23(1): 014206.

[9] Wei K H, Jiang P P, Wu B, et al. Fiber laser pumped burst-mode operated picosecond mid-infrared laser[J]. Chinese Physics B, 2015, 24(2): 024217.

[10] 马伟超, 陈少华, 赵昆, 边缘滤波法解调的相移光纤布拉格光栅应变传感器[J]. 中国激光, 2013, 40(9): 0905004.

    Ma Weichao, Chen Shaohua, Zhao Kun, et al. Phase-shifted fiber Bragg grating strain sensor demodulated by edge filter[J]. Chinese J Lasers, 2013, 40(9): 0905004.

[11] Balc S, nverdi N . Applications of optical fiber Bragg grating sensors in optical communication systems[C]. 23rdSignal Processing and Communications Applications Conference, 2015: 2678-2681.

[12] Zhang P,Cerecedo-Nu′ez H H, Qi B, et al. Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg-grating-based sensor system[J]. Optical Engineering, 2003, 42(6): 1597-1603.

[13] Enami Y, Iwashima H, Kobayashi T. Fiber strain sensor using low reflective fiber Bragg gratings[C]. Lasers and Electro-Optics, 2005: 755-757.

[14] Eom T J, Kim M J, Lee B H, et al. Temperature monitoring system based on fiber Bragg grating arrays with a wavelength tunable OTDR[J]. IEICE Transactions on Electronics, 2005, E88-C(5): 933-937.

[15] Lo Y L, Xu S H. New sensing mechanisms using an optical time domain reflectometry with fiber Bragg gratings[J]. Sensors and Actuators A: Physical, 2007, 136(1): 238-243.

[16] Crunelle C, Wuilpart M, Caucheteur C, et al. Original interrogation system for quasi-distributed FBG-based temperature sensor with fast demodulation technique[J]. Sensors and Actuators A: Physical, 2009, 150(2): 192-198.

[17] 刘川, 饶云江, 冉曾令, 等. 基于时分复用和窄波长扫描激光的长距离光纤布喇格光栅传感系统[J]. 光子学报, 2010, 39(11): 2004-2007.

    Liu Chuan, Rao Yunjiang, Ran Zengling, et al. Long-distance fiber Bragg grating sensor system based on time division multiplexing and narrow wavelength swept laser[J]. Acta Photonica Sinica, 2010, 39(11): 2004-2007.

[18] 张燕君, 谢晓鹏, 毕卫红. 基于弱光栅的高速高复用分布式温度传感网络[J]. 中国激光, 2013, 40(4): 0405006.

    Zhang Yanjun, Xie Xiaopeng, Bi Weihong. High-speed high-multiplexing distributed temperature sensor network based on weak-reflection fiber gratings[J]. Chinese J Lasers, 2013, 40(4): 0405006.

[19] 李仕春, 华灯鑫, 宋跃辉, 等. 全光纤转动拉曼激光雷达的光纤光栅分光技术研究[J]. 量子电子学报, 2013, 30(1): 110-115.

    Li Shichun, Hua Dengxin, Song Yuehui, et al. Research on spectroscopic technique of fiber Bragg grating for all-fiber rotational Raman lidar[J]. Chinese Journal of Quantum Electronics, 2013, 30(1): 110-115.

[20] 李建芝, 孙宝臣. 新型光纤光栅温度自补偿方法理论分析[J]. 强激光与粒子束, 2015, 27(2): 024115.

    Li J Z, Sun B C. Theory analysis of novel fiber Bragg grating temperature compensated method based on thermal stress[J]. High Power Laser and Particle Beams, 2015, 27(2): 024115.

[21] Gong X, Hua D X, Zhang P B, et al. Alternate dual pulses technique for Bragg grating ultra-multi-point strain measurement[C]. SPIE, 2012, 8759: 875927.

巩鑫, 华灯鑫, 李仕春, 王骏, 代晨昱. 时分复用光纤光栅系统的边缘滤波解调与标定[J]. 中国激光, 2016, 43(10): 1010006. Gong Xin, Hua Dengxin, Li Shichun, Wang Jun, Dai Chenyu. Edge Filtering Demodulation and Calibration of Fiber Grating System Based on Time-Division Multiplexing[J]. Chinese Journal of Lasers, 2016, 43(10): 1010006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!