无机材料学报, 2021, 36 (1): 43, 网络出版: 2021-01-21  

Ti 4+掺杂M型六角铁氧体BaFe12-xTixO19陶瓷的磁学和介电特性

Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics
作者单位
1 华东师范大学 1. 物理与电子科学学院, 电子科学系
2 极化材料与器件教育部重点实验室, 上海 200241
引用该论文

柏嘉玮, 杨静, 吕桢飞, 唐晓东. Ti 4+掺杂M型六角铁氧体BaFe12-xTixO19陶瓷的磁学和介电特性[J]. 无机材料学报, 2021, 36(1): 43.

Jiawei BAI, Jing YANG, Zhenfei LÜ, Xiaodong TANG. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43.

参考文献

[1] HURN, PARKS, SHARMAP, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 2004,429(6990):392-395.

[2] FIEBIGM. Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics, 2005,38(8):R123-R152.

[3] EERENSTEINW, MATHURN, SCOTT JF. Multiferroic and magnetoelectric materials. Nature, 2006,442(7104):759-765.

[4] BIBESM, BARTHÉLÉMY A. Towards a magnetoelectric memory. Nature Materials, 2008,7(6):425-426.

[5] DZYALOSHINSKIII. On the magneto-electrical effects in antiferromagnets. Soviet Physics JETP, 1960,10:628-629.

[6] ASTROVD. The magnetoelectric effect in antiferrom agnetics. Soviet Physics JETP, 1960,11(3):708-709.

[7] KHOMSKIID. Classifying multiferroics: mechanisms and effects. Physics, 2009,2:20.

[8] WANGJ, NEATONJ, ZHENGH, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures Science, 2003,299(5613):1719-1722.

[9] PETITS, MOUSSAF, HENNIONM, et al. Spin phonon coupling in hexagonal multiferroic YMnO3. Physical Review Letters, 2007,99(26):266604.

[10] WILKINSS, FORRESTT, BEALET, et al. Nature of the magnetic order and origin of induced ferroelectricity in TbMnO3. Physical Review Letters, 2009,103(20):207602.

[11] KAGAWAF, MOCHIZUKIM, ONOSEY, et al. Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO3. Physical Review Letters, 2009,102(5):057604.

[12] KIMURAT. Magnetoelectric hexaferrites. Annual Review of Condensed Matter Physics, 2012,3(1):93-110.

[13] DZYALOSHINSKYI. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids, 1958,4(4):241-255.

[14] MORIYAT. Anisotropic superexchange interaction and weak ferromagnetism. Physical Review, 1960,120(1):91-98.

[15] KIMURAT, GOTOT, SHINTANIH, et al. Magnetic control of ferroelectric polarization. Nature, 2003,426(6962):55-58.

[16] CHOIY, OKAMOTOJ, HUANGD, et al. Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4. Physical Review Letters, 2009,102(6):067601.

[17] KIMURAT, LAWESG, RAMIREZA. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Physical Review Letters, 2005,94(13):137201.

[18] ZHAIK, WUY, SHENS, et al. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites. Nature Communications, 2017,8(1):1-8.

[19] KITAGAWAY, HIRAOKAY, HONDAT, et al. Low-field magnetoelectric effect at room temperature. Nature Materials, 2010,9(10):797-802.

[20] PULLARR. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science, 2012,57(7):1191-1334.

[21] TOKUNAGAY, KANEKOY, OKUYAMAD, et al. Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Physical Review Letters, 2010,105(25):257201.

[22] ALESHKO-OZHEVSKIIO, SIZOVR, YAMZINI, et al. Helicoidal antiphase spin ordering in hexagonal ferrites of the BaScxFe12-xO19(M) system. Soviet Physics JETP, 1969,28(3):425-430.

[23] KAMZINA, ROZENBAUMV, OL’KHOVIKL. Mössbauer studies of the surface and bulk magnetic structure of scandium- substituted Ba-M-type hexaferrites. Physics of the Solid State, 1999,41(3):433-439.

[24] CHUNS, CHAIY, OHY, et al. Realization of giant magnetoelectricity in helimagnets. Physical Review Letters, 2010,104(3):037204.

[25] BRABERSV, STEVENSA, DALDEROPJ, et al. Magnetization and magnetic anisotropy of BaFe12-xTixO19 hexaferrites. Journal of Magnetism and Magnetic Materials, 1999,196:312-314.

[26] MARIÑO-CASTELLANOSP, ANGLADA-RIVERAJ, CRUZ- FUENTESA, et al. Magnetic and microstructural properties of the Ti 4+-doped barium hexaferrite. Journal of Magnetism and Magnetic Materials, 2004,280(2/3):214-220.

[27] MARIÑO-CASTELLANOSP, MORENO-BORGESA, OROZCO- MELGARG, et al. Structural and magnetic study of the Ti 4+-doped barium hexaferrite ceramic samples: theoretical and experimental results. Physica B: Condensed Matter, 2011,406(17):3130-3136.

[28] SHANNONR. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976,32(5):751-767.

[29] KREBERE, GONSERU. Determination of cation distribution in Ti 4+ and Co 2+ substituted barium ferrite by mössbauer spectroscopy . Applied Physics, 1976,10(2):175-180.

[30] KREISELJ, VINCENTH, TASSETF, et al. An investigation of the magnetic anisotropy change in BaFe12-2xTixCoxO19 single crystals. Journal of Magnetism and Magnetic Materials, 2001,224(1):17-29.

[31] JONSCHERA. Dielectric Relaxation in Solids.London: Chelsea Dielectrics Press, 1983.

[32] KEQ, LOUX, WANGY, et al. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Physical Review B, 2010,82(2):024102.

[33] MACDONALDJ. Impedance Spectroscopy. New York: John Wiley, 1987.

柏嘉玮, 杨静, 吕桢飞, 唐晓东. Ti 4+掺杂M型六角铁氧体BaFe12-xTixO19陶瓷的磁学和介电特性[J]. 无机材料学报, 2021, 36(1): 43. Jiawei BAI, Jing YANG, Zhenfei LÜ, Xiaodong TANG. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!