Photonics Research, 2017, 5 (5): 05000417, Published Online: Aug. 31, 2017   

Silicon photonic platforms for mid-infrared applications [Invited] Download: 1118次

Author Affiliations
1 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore 138634, Singapore
2 Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
Copy Citation Text

Ting Hu, Bowei Dong, Xianshu Luo, Tsung-Yang Liow, Junfeng Song, Chengkuo Lee, Guo-Qiang Lo. Silicon photonic platforms for mid-infrared applications [Invited][J]. Photonics Research, 2017, 5(5): 05000417.

References

[1] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 2010, 4: 495-497.

[2] R. Shankar, M. Lončar. Silicon photonic devices for mid-infrared applications. Nanophotonics, 2014, 3: 329-341.

[3] PalikE. D., Handbook of Optical Constants of Solids (Academic, 1998), Vol. 1.

[4] V. M. Lavchiev, B. Jakoby. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 8200612.

[5] N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, G. Roelkens. High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared. IEEE Photon. Technol. Lett., 2012, 24: 1536-1538.

[6] M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, H. Wang. Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm. IEEE Photon. Technol. Lett., 2016, 28: 2827-2829.

[7] G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, Y. Hu. Low loss silicon waveguides for the mid-infrared. Opt. Express, 2011, 19: 7112-7119.

[8] M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, G. Z. Ashanovich. Silicon waveguides and devices for the mid-infrared. Appl. Phys. Lett., 2012, 101: 121105.

[9] Z. Cheng, X. Chen, C. Y. Wong, K. Xu, H. K. Tsang. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator. IEEE Photon. J., 2012, 4: 1510-1519.

[10] M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, G. Roelkens. Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm. Opt. Express, 2013, 21: 11659-11669.

[11] J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, G. Z. Mashanovich. Low-loss mid-infrared SOI slot waveguides. IEEE Photon. Technol. Lett., 2015, 27: 1197-1199.

[12] S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, M. Lipson. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 2017, 4: 707-712.

[13] B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, G.-Q. Lo. Silicon-on-insulator waveguide devices for broadband mid-infrared photonics. IEEE Photon. J., 2017, 9: 4501410.

[14] Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, Q. Xu. Suspended Si ring resonator for mid-IR application. Opt. Lett., 2013, 38: 1122-1124.

[15] L. Qin, L. Wang, M. Li, J. He. Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating. IEEE Photon. Technol. Lett., 2012, 24: 954-956.

[16] X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, J. He. High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect. Opt. Lett., 2014, 39: 6363-6366.

[17] B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, G. Z. Mashanovich. Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared. Opt. Express, 2014, 22: 23990-24003.

[18] B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, G. Z. Mashanovich. Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared. Opt. Lett., 2016, 41: 610-613.

[19] J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, J. E. Bowers. Two-dimensional free space beam steering with an optical phased array on silicon-on-insulator. Opt. Express, 2011, 19: 21595-21604.

[20] J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts. Large-scale nanophotonic phased array. Nature, 2013, 493: 195-199.

[21] D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, R. T. Chen. On-chip silicon optical phased array for two-dimensional beam steering. Opt. Lett., 2014, 39: 941-944.

[22] A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, M. R. Watts. Integrated phased array for wide-angle beam steering. Opt. Lett., 2014, 39: 4575-4578.

[23] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, M. R. Watts. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett., 2017, 42: 21-24.

[24] PfennigbauerM.UllrichA., “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans, Louisiana, 2011.

[25] B. Jalali. Silicon photonics: nonlinear optics in the mid-infrared. Nat. Photonics, 2010, 4: 506-508.

[26] S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, S. Ra. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics, 2010, 4: 561-564.

[27] B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. J. Green, G. Roelkens. Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion. Opt. Lett., 2014, 39: 1349-1352.

[28] B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, W. M. J. Green. 50  dB parametric on-chip gain in silicon photonic wires. Opt. Lett., 2011, 36: 4401-4403.

[29] B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, W. M. J. Green. A silicon-based widely tunable short-wave infrared optical parametric oscillator. Opt. Express, 2013, 21: 5931-5940.

[30] X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photonics, 2010, 4: 557-560.

[31] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 2015, 6: 6299.

[32] Y. Chang, V. Paeder, L. Hvozdara, J. Hartmann, H. P. Herzig. Low-loss germanium strip waveguides on silicon for the mid-infrared. Opt. Lett., 2012, 37: 2883-2885.

[33] M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, G. Z. Mashanovich. Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers. IEEE Photon. Technol. Lett., 2015, 27: 1040-1043.

[34] U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, K. Ang. Germanium-on-SOI waveguides for mid-infrared wavelengths. Opt. Express, 2016, 24: 11987-11993.

[35] U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, K. Ang. Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing. IEEE Photon. Technol. Lett., 2016, 28: 2447-2450.

[36] J. Kang, M. Takenaka, S. Takagi. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Opt. Express, 2016, 24: 11855-11864.

[37] W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, C. S. Tan. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. Appl. Phys. Lett., 2016, 109: 241101.

[38] S. Khan, J. Chiles, J. Ma, S. Fathpour. Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics. Appl. Phys. Lett., 2013, 102: 121104.

[39] T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, M. L. Hochberg. Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt. Express, 2010, 18: 12127-12135.

[40] F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, D. J. Moss. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt. Express, 2011, 19: 15212-15220.

[41] M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, S. Nicoletti. Low loss SiGe graded index waveguides for mid-IR applications. Opt. Express, 2014, 22: 508-518.

[42] P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, H. X. Tang. Low-loss aluminium nitride thin film for mid-infrared microphotonics. Laser Photon. Rev., 2014, 8: L23-L28.

[43] Z. Cheng, X. Chen, C. Y. Wong, K. Xu, H. K. Tsang. Broadband focusing grating couplers for suspended-membrane waveguides. Opt. Lett., 2012, 37: 5181-5183.

[44] Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, H. K. Tsang. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Opt. Lett., 2012, 37: 1217-1219.

[45] Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, H. K. Tsang. Mid-infrared grating couplers for silicon-on-sapphire waveguides. IEEE Photon. J., 2012, 4: 104-113.

[46] C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, G. Z. Mashanovich. Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation. Opt. Lett., 2016, 41: 4324-4327.

[47] Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, X. Jiang. Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides. Opt. Express, 2011, 19: 15803-15809.

[48] MiloševićM. M.NedeljkovicM.MasaudT. M. B.JaberansaryE.ChongH. M. H.ReedG. T.MashanovichG. Z., “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

[49] M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, G. Z. Mashanovich. Silicon photonic devices and platforms for the mid-infrared. Opt. Mater. Express, 2013, 3: 1205-1214.

[50] MalikA.MuneebM.ShimuraY.CampenhoutJ. V.LooR.RoelkensG., “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

[51] A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, M. Hochberg. Silicon waveguides and ring resonators at 5.5  μm. Appl. Phys. Lett., 2010, 97: 213501.

[52] C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, H. K. Tsang. Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning. IEEE Photon. J., 2012, 4: 1095-1102.

[53] R. Shankar, I. Bulu, M. Lončar. Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared. Appl. Phys. Lett., 2013, 102: 051108.

[54] R. Shankar, R. Leijssen, I. Bulu, M. Lončar. Mid-infrared photonic crystal cavities in silicon. Opt. Express, 2011, 19: 5579-5586.

[55] C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, C. Lee. Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 4900107.

[56] Y. Zou, S. Chakravarty, R. T. Chen. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities. Appl. Phys. Lett., 2015, 107: 081109.

[57] A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, G. Roelkens. Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers. IEEE Photon. Technol. Lett., 2013, 25: 1805-1808.

[58] A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, G. Roelkens. Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared. Appl. Phys. Lett., 2013, 103: 161119.

[59] P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, S. Nicoletti. Design, fabrication and characterization of an AWG at 4.5  μm. Opt. Express, 2015, 23: 26168-26181.

[60] PenadesJ. S.HuY.NedeljkovicM.LittlejohnsC. G.KhokharA. Z.MitchellC. J.StankovicS.RoelkensG.GardesF. Y.MashanovichG. Z., “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

[61] T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, H. Wang. A polarization splitter and rotator based on a partially etched grating-assisted coupler. IEEE Photon. Technol. Lett., 2016, 28: 911-914.

[62] T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, H. Wang. A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch. IEEE Photon. J., 2016, 8: 4802209.

[63] M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, W. M. J. Green. Demonstration of electrooptic modulation at 2165  nm using a silicon Mach-Zehnder interferometer. Opt. Express, 2012, 20: 28009-28016.

[64] D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, G. Z. Mashanovich. Optical detection and modulation at 2  μm-2.5  μm in silicon. Opt. Express, 2014, 22: 10825-10830.

[65] L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, A. C. Peacock. Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides. Opt. Lett., 2015, 40: 268-271.

[66] J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, M. Yu. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator. Opt. Express, 2012, 20: 7081-7087.

[67] J. Ding, R. Ji, L. Zhang, L. Yang. Electro-optical response analysis of a 40  Gb/s silicon Mach-Zehnder optical modulator. J. Lightwave Technol., 2013, 31: 2434-2440.

[68] J. Chiles, S. Fathpour. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 2014, 1: 350-355.

[69] S. Liu, K. Xu, Q. Song, Z. Cheng, H. K. Tsang. Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides. J. Lightwave Technol., 2016, 34: 3837-3842.

[70] S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, A. Kaplan. All-optical modulation in mid-wavelength infrared using porous Si membranes. Sci. Rep., 2016, 6: 30211.

[71] M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich. Mid-infrared thermo-optic modulators in SOI. IEEE Photon. Technol. Lett., 2014, 26: 1352-1355.

[72] C. Lin, M. Grau, O. Dier, M.-C. Amann. Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers. Appl. Phys. Lett., 2004, 84: 5088-5090.

[73] L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, S. Suchalkin. Continuous wave operation of diode lasers at 3.36  μm at 12°C. Appl. Phys. Lett., 2008, 93: 011103.

[74] S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard. Laser diodes for gas sensing emitting at 3.06  μm at room temperature. IEEE Photon. Technol. Lett., 2010, 22: 1084-1086.

[75] Y. Yao, A. J. Hoffman, C. F. Gmachl. Mid-infrared quantum cascade lasers. Nat. Photonics, 2012, 6: 432-439.

[76] M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, S. Slivken. Quantum cascade lasers: from tool to product. Opt. Express, 2015, 23: 8462-8475.

[77] M. S. Vitiello, G. Scalari, B. Williams, P. D. Natale. Quantum cascade lasers: 20 years of challenges. Opt. Express, 2015, 23: 5167-5182.

[78] MaisonsG.GillesC.OrbeL.CarpinteroG.AbautretJ.CarrasM., “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

[79] A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, J. E. Bowers. Quantum cascade laser on silicon. Optica, 2016, 3: 545-551.

[80] S. Latkowski, A. Hänsel, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius, M. K. Smit, K. A. Williams. Monolithically integrated widely tunable laser source operating at 2  μm. Optica, 2016, 3: 1412-1417.

[81] A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, G. Roelkens. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express, 2012, 20: 27297-27303.

[82] H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, Q. Wang. Silicon based GeSn p-i-n photodetector for SWIR detection. IEEE Photon. J., 2016, 8: 1-6.

[83] J. Wang, J. Hu, P. Becla, A. M. Agarwal, L. C. Kimerling. Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform. Opt. Express, 2010, 18: 12890-12896.

[84] J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, A. M. Agarwal. Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon. Appl. Phys. Lett., 2012, 100: 211106.

[85] J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, H. Liu. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates. ACS Photon., 2016, 3: 749-753.

[86] X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, M. Yu. Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application. IEEE J. Sel. Top. Quantum Electron., 2016, 22: 443-454.

[87] H. Jane, R. P. Tatam. Optical gas sensing: a review. Meas. Sci. Technol., 2012, 24: 012004.

[88] Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, D. T. H. Tan. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett., 2016, 108: 141106.

[89] C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, M. G. Allen. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. Opt. Express, 2015, 23: 5491-5499.

[90] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J. P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 1997, 15: 998-1005.

[91] J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, D.-L. Kwong. Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors. Opt. Express, 2012, 20: 4189-4197.

[92] A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, S. Nicoletti. Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor. Sensors, 2014, 14: 957-974.

Ting Hu, Bowei Dong, Xianshu Luo, Tsung-Yang Liow, Junfeng Song, Chengkuo Lee, Guo-Qiang Lo. Silicon photonic platforms for mid-infrared applications [Invited][J]. Photonics Research, 2017, 5(5): 05000417.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!