激光生物学报, 2020, 29 (6): 561, 网络出版: 2021-02-05  

微生物炭基土壤调理剂对水稻生长生理和镉吸收的影响

Effects of Microbial and Biochar Soil Conditioners on Rice Growth and Cadmium Uptake
作者单位
1 湖南农业大学生物科学技术学院,长沙 410128
2 湖南农业大学芒属植物生态应用技术湖南省工程实验室,长沙 410128
3 哥本哈根大学理学院植物与环境科学系,泰斯特鲁普 DK-2630
摘要
为了研究 3种不同物质属性的土壤调理剂及其配伍对水稻生长生理和镉吸收的影响,采用随机区组设计,共设 4个处理: CK(常规施肥)T1(常规施肥 +细胞分裂素生产菌剂)、T2(常规施肥 +细胞分裂素生产菌剂 +南荻炭)和 T3(常规施肥 +细胞分裂素、生产菌剂 +南荻炭 +活性硅)以研究微生物炭基土壤调理剂对镉污染土壤中水稻品种黄花占生长生理和镉吸收的影响。结果表明:经 T1、T2和,T3处理的水稻抽穗期剑叶的净光合速率均高于 CK,其中 T3处理的水稻抽穗期剑叶的净光合速率达到 17.67 μmol/(m2?s);过氧化氢酶活性、超氧化物歧化酶活性和根系活力均显著高于 CK;各处理相对产量与 CK均具有显著差异,其大小顺序均为 T3>T2>T1>CK,与 CK相比, T1、T2和 T3处理的增产率为 20.07%~27.94%,水稻茎秆镉含量和籽粒镉含量的大小顺序均为 CK>T1>T2>T3,T3处理使生长在土壤镉含量为 1.84 mg/kg中水稻籽粒的镉含量低至 0.20 mg/kg。综上,微生物炭基土壤调理剂能够增强水稻抗逆生理能力,提高水稻根系活力和细菌多样性,提高抽穗期水稻的光合作用能力,增加收获期的株高和相对产量,降低籽粒镉含量和茎秆到籽粒的镉转运系数,提高籽粒品质;且多元复配固态土壤调理剂比单一土壤调理剂的应用效果更佳。这些研究结果可为镉污染区内的水稻安全生产应用技术的研究提供一定的理论依据。
Abstract
In order to study the effects of three different soil conditioners and their compatibilities on rice growth physi-ology and cadmium absorption, a random block design was used and a total of 4 treatments were set up: CK (conventional fertilization), T1 (conventional fertilization + cytokinin producing bacteria agent), T2 (conventional fertilization + cytokinin producing bacteria agent + Miscanthus lutarioriparius biochar), T3 (conventional fertilization + cytokinin producing bac-teria agent + Miscanthus lutarioriparius biochar + active silicon). Therefore, we can study the e.ects of microbial biochar soil conditioners on the growth physiology and cadmium uptake of rice variety Huanghuazhan in cadmium-contaminated soil. The results showed that the net photosynthetic rate of.ag leaves at the heading stage of rice treated with T1,T2 and T3 was higher than that of CK, of which the net photosynthetic rate of T3 reached 17.67 μmol/(m2?s); catalase activity and su-peroxide dismutase activity and root vitality were significantly higher than the control. The relative yield of each treatment is significantly different from that of CK, and the order of size is T3>T2>T1>CK. The relative yield of each treatment was signi.cantly di.erent from that of CK, and the order of magnitude was T3>T2>T1>CK. Compared with that of CK, the in-creased yield percentage of T1,T2 and T3 treatments was in the range of 20.07% to 27.94% at mature stage. The cadmium content of rice stem and grain were in the order of CK>T1>T2>T3. The grain of T3 was as low as 0.20 mg/kg to grow soil of 1.84 mg/kg cadmium content. In conclusion, microbial and birchar soil conditioners could enhance the capacity of rice physiological resistance, root activity and bacterial diversity, improve the photosynthesis at heading stage, increase the plant height and relative yield at mature stage, reduce the grain cadmium content and cadmium translocation coe.cient from stem to grain, therefore improve the grain quality. Moreover, the application effect of multi-component solid soil conditioner is better than that of single soil conditioner. The results of these studies can provide a certain theoretical basis for the research on the application technology of safe production of rice in cadmium-contaminated areas.
参考文献

[1] FAHAD S, HUSSAIN S, SAUD S, et al. A biochar application protects rice pollen from high-temperature stress[J]. Plant Physi-ology and Biochemistry, 2015, 96(3): 281-287.

[2] XU P, SUN C X, YE X Z, et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil[J]. Ecotoxicology and Environmental Safety, 2016, 132(10): 94-100.

[3] RAY D K, RAMANKUTTY N, MUELLER N D, et al. Recent patterns of crop yield growth and stagnation[J]. Nature Commu-nications, 2012, 1293(3): 1-7.

[4] WHEELER T, VON BRAUN J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508-513.

[5] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, et al. Food security: the challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818.

[6] WILLIAM J, NELSON M, BARBARA C. et al. Meeting the chal-lenge of feeding 9 billion people safely and securely[J]. Journal of Agromedicine, 2012, 17(4): 347-350.

[7] 王蜜安,尹丽辉,彭建祥,等.综合降镉(VIP)技术对降低糙米镉含量的影响研究[J].中国稻米, 2016, 22(1): 43-47. WANG Mi’an, YIN Lihui, PENG Jianxiang, et al.E.ects of VIP technology on reducing cadmium content in rice[J]. China Rice, 2016, 22(1): 43-47.

[8] VONDRá.KOVá S, HEJCMAN M, TLUSTO. P, et al.E.ect of quick lime and dolomite application on mobility of elements (Cd, Zn, Pb, As, Fe, and Mn) in contaminated soils[J]. Polish Journal of Environmental Studies, 2013, 22(2): 577-589.

[9] STAVI I, LAL R. Agroforestry and biochar to offset climate change: a review[J]. Agronomy for Sustainable Development, 2013, 33(1): 81-96.

[10] RONDON M A, LEHMANN J, RAMíREZ J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) in-creases with bio-char additions[J]. Biology and Fertility of Soils, 2007, 43(6): 699-708.

[11] LUYIMA D, LEE J H, YOO J H, et al. Post-pyrolysis nutrient en-hancement of wood biochar with compost and uncharred wastes-influence on soil chemical properties and crop productivity[J]. Kyushu University Institutional Repository, 2019, 64(2): 199-204.

[12] EGAMBERDIEVA D. The role of phytohormone producing bacte-ria in alleviating salt stress in crop plants[M]. America: Stadium Press LLC, 2013: 21-39.

[13] RYU C M, FARAG MA, HU C H, et al. Bacterial volatiles pro-mote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2003, 100(8): 4927-4932.

[14] WANG C, ZHAO L, SUN R, et al. Effects of silicon-aluminum additives on ash mineralogy, morphology, and transformation of sodium, calcium, and iron during oxy-fuel combustion of zhun-dong high-alkali coal[J]. International Journal of Greenhouse Gas Control, 2019, 91 (10): 102832.

[15] SONG A, LI P, LI Z, et al. The alleviation of zinc toxicity by sili-con is related to zinc transport and antioxidative reactions in rice[J]. Plant and Soil, 2011, 344(1/2): 319-333.

[16] ZHANG Q, YAN C, LIU J, et al. Silicon alleviation of cadmium toxicity in mangrove (Avicennia marina) in relation to cadmium compartmentation[J]. Journal of Plant Growth Regulation, 2014,33(2): 233-242.

[17] OLDROYD G E D. Nodules and hormones[J]. Science, 2007,315(5808): 52-53.

[18] HUSSAIN A, HASNAIN S. Cytokinin production by some bacte-ria: its impact on cell division in cucumber cotyledons[J]. African Journal of Microbiology Research, 2009, 3(11): 704-712.

[19] 刘柯驿,潘澈,彭静,等.细胞分裂素生产菌对马铃薯早期生长生理的影响[J].湖南农业科学, 2012(1): 12-14. LIU Keyi, PAN Che, PENG Jing, et al. Influences of cytokinin producing bacteria on growth and physiology of potato in early period[J]. Hunan Agricultural Science, 2012(1): 12-14.

[20] MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688.

[21] XIANG W, XUE S, QIN S, et al. Development of a multi-criteria decision making model for evaluating the energy potential of Miscanthus germplasms for bioenergy production[J]. Industrial Crops and Products, 2018, 125(10): 602-615.

[22] 李力,陆宇超,刘娅,等.玉米秸秆生物炭对 Cd (Ⅱ)的吸附机理研究[J].农业环境科学学报, 2012, 31(11): 2277-2283. LI Li, LU Yuchao, LIU Ya, et al. Adsorption mechanisms of cad-mium (Ⅱ) on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11): 2277-2283.

[23] HE R, PENG Z, LYU H, et al. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal[J]. Sci-ence of the Total Environment, 2018, 612(15): 1177-1186.

[24] SUN Y, ZHANG J Y, LONG G L, et al. Coexistence of normal, super-, and hyper-deformation in nuclei: a study with angular mo-mentum projection method[J]. Chinese Science Bulletin, 2009,54(3): 358-363.

[25] SCHULZ H, GLASER B. E.ects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3): 410-422.

[26] VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2): 235-246.

[27] 李子芳,吴锡冬.植物丙二醛含量测定试验设计方案[J].天津农业科学, 2016, 22(9): 49-51. LI Zifang, WU Xidong. Experimental design scheme for the ef-fect of drought stress on content of malondialdehyde of indoor ornamental plants[J]. Tianjin Agricultural Science, 2016, 22(9): 49-51.

[28] 王伟玲,王展,王晶英.植物过氧化物酶活性测定方法优化[J].实验室研究与探索, 2010, 29(4): 21-23. WANG Weiling, WANG Zhan, WANG Jingying. Optimization of determination method of peroxidase activity in plant[J]. Research and Exploration in Laboratory, 2010, 29(4): 21-23.

[29] 徐东,赵建,黄汉昌,等.改良的黄嘌呤氧化酶法测定动植物组织中 SOD比活力[J].食品科学, 2011, 32(6): 237-241. XU Dong, ZHAO Jian, HUANG Hanchang, et al. Determina-tion of sod specific activity in animal and plant tissues by im-proved xanthine oxidase method[J]. Food Science, 2011, 32(6): 237-241.

[30] 王秀波,上官周平.干旱胁迫下氮素对不同基因型小麦根系活力和生长的调控[J].麦类作物学报, 2017, 37(6): 820-827. WANG Xiubo, SHANGGUAN Zhouping. E.ect of nitrogen on root vigor and growth in different genotypes of wheat under drought stress[J]. Journal of Triticeae Crops, 2017, 37(6): 820-827.

[31] 王飞,王建国,刘登望,等.不同花生品种对稻田镉富集及转运的研究[J].中国油料作物学报, 2019, 41(4): 568-576. WANG Fei, WANG Jianguo, LIU Dengwang, et al. Cadmium con-centration and translocation in paddy.elds with di.erent peanut varieties[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 568-576.

[32] 黄亚成,秦云霞.植物中活性氧的研究进展[J].中国农学通报, 2013, 28(36): 219-226. HUANG Yacheng, QIN Yunxia. Advances on reactive oxygen spe-cies in plants[J]. Chinese Agricultural Science Bulletin, 2013,28(36): 219-226.

[33] GUO W, HOU Y L, WANG S G, et al. Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture[J]. Plant and Soil, 2005, 272(1/2): 173-181.

[34] LIU J, ZHANG H, ZHANG Y, et al. Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress[J]. Plant Physiology and Biochemistry, 2013, 68(7): 1-7.

[35] GRABER E R, HAREL Y M, KOLTON M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plantand Soil, 2010, 337: 481-496.

[36] STEINBEISS S, GLEIXNER G, ANTONIETTI M. E.ect of bio-char amendment on soil carbon balance and soil microbial activity[J]. Soil Biology and Biochemistry, 2009, 41(6): 1301-1310.

[37] 许依,汤姆,薛帅,等. CTK菌剂对甜瓜养分积累和根际微生物的影响[J].扬州大学学报 :农业与生命科学版, 2017, 38(2): 100-105. XU Yi, TANG Mu, XUE Shuai, et al.E.ect of cytokinin produc-ing bacteria on the nutrient elements content and rhizosphere soil microbial content of muskmelon[J]. Journal of Yangzhou Univer-sity: Agriculture and Life Science Edition, 2017, 38(2): 100-105.

[38] ZHU X, CHEN B, ZHU L, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution re-mediation: a review[J]. Environmental Pollution, 2017, 227(8): 98-115

[39] KELLY C N, CALDERóN F C, ACOSTA-MARTíNEZ V, et al. Switchgrass biochar effects on plant biomass and microbial dy-namics in two soils from di.erent regions[J]. Pedosphere, 2015, 25(3): 329-342.

[40] FENG S J, CHE J, YAMAJI N, et al. Silicon reduces cadmium accumulation by suppressing expression of transporter genes in-volved in cadmium uptake and translocation in rice[J]. Journal of Experimental Botany, 2017, 68(20): 5641-5651.

宋如荻, 彭晓英, 王亦豪, 田梓轩, 刘福来, 王惠群. 微生物炭基土壤调理剂对水稻生长生理和镉吸收的影响[J]. 激光生物学报, 2020, 29(6): 561. SONG Rudi, PENG Xiaoying, WANG Yihao, TIAN Zixuan, LIU Fulai, WANG Huiqun. Effects of Microbial and Biochar Soil Conditioners on Rice Growth and Cadmium Uptake[J]. Acta Laser Biology Sinica, 2020, 29(6): 561.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!