激光与光电子学进展, 2019, 56 (8): 082701, 网络出版: 2019-07-26   

测量设备无关的经典-量子信号共纤传输方案 下载: 944次

Scheme of Measurement-Device-Independent Classical-Quantum Signal Transmission in Shared Fiber
作者单位
海军工程大学电子工程学院, 湖北 武汉 430033
引用该论文

程康, 周媛媛, 王欢. 测量设备无关的经典-量子信号共纤传输方案[J]. 激光与光电子学进展, 2019, 56(8): 082701.

Kang Cheng, Yuanyuan Zhou, Huan Wang. Scheme of Measurement-Device-Independent Classical-Quantum Signal Transmission in Shared Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(8): 082701.

参考文献

[1] Wang L J, Zou K H, Sun W, et al. Long distance co-propagation of quantum key distribution and terabit classical optical data channels[J]. Physical Review A, 2017, 95(1): 012301.

[2] Mao Y Q, Wang B X, Zhao C X, et al. Integrating quantum key distribution with classical communications in backbone fiber network[J]. Optics Express, 2018, 26(5): 6010.

[3] 罗均文, 李云霞, 石磊, 等. 基于少模光纤模分复用的量子信号-经典光信号共纤同传技术[J]. 激光与光电子学进展, 2017, 54(2): 022702.

    Luo J W, Li Y X, Shi L, et al. Co-fiber-transmission technology for quantum signal and classical optical signal based on mode division multiplexing in few-mode fiber[J]. Laser & Optoelectronics Progress, 2017, 54(2): 022702.

[4] 罗均文, 李云霞, 蒙文, 等. 基于波长-模式双复用的量子保密通信系统[J]. 光学学报, 2017, 37(9): 0927001.

    Luo J W, Li Y X, Meng W, et al. Quantum private communication system based on wavelength-mode division co-multiplexing[J]. Acta Optica Sinica, 2017, 37(9): 0927001.

[5] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength-division multiplexing[J]. Electronics Letters, 1997, 33(3): 188-190.

[6] Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength: multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 2005, 87(17): 174103.

[7] Chapuran T E, Toliver P, Peter N A, et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 2009, 11(10): 105001.

[8] Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states[J]. Physical Review Letters, 2002, 88(5): 057902.

[9] Scarani V, Acín A, Ribordy G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations[J]. Physical Review Letters, 2004, 92(5): 057901.

[10] Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 2005, 72(1): 012326.

[11] Tamaki K, Lo H K. Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 2012, 85(4): 042307.

[12] Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501.

[13] 彭承志, 潘建伟. 量子科学实验卫星: “墨子号”[J]. 中国科学院院刊, 2016, 31(9): 1096-1104.

    Peng C Z, Pan J W. Quantum science experimental satellite “Micius”[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(9): 1096-1104.

[14] Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantum-key-distribution network in vienna[J]. International Journal of Quantum Information, 2008, 6(2): 209-218.

[15] Chen G, Zhang L J, Zhang W H, et al. Achieving Heisenberg-scaling precision with projective measurement on single photons[J]. Physical Review Letters, 2018, 121(6): 060506.

[16] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication[J]. Physical Review Letters, 2003, 91(5): 057901.

[17] 孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J]. 光学学报, 2016, 36(3): 0327001.

    Sun Y, Zhao S H, Dong C. Measurement device independent quantum key distribution network based on quantum memory and entangled photon sources[J]. Acta Optica Sinica, 2016, 36(3): 0327001.

[18] Tang Y L, Yin H L, Chen S J, et al. Publisher's note: Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters, 2015, 114(6): 069901.

[19] Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6): 062319.

[20] 毛钱萍, 赵生妹, 王乐, 等. 基于波分复用技术的测量设备无关量子密钥分发[J]. 量子电子学报, 2017, 34(1): 46-53.

    Mao Q P, Zhao S M, Wang L, et al. Measurement-device-independent quantum key distribution based on wavelength division multiplexing technology[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 46-53.

[21] Agrawal GP. 光学与光电子学: 光纤通信系统[M]. 贾东方, 忻向军, 译. 4版. 北京: 电子工业出版社, 2016: 60.

    Agrawal GP. Fiber-optic communication systems[M]. Jia D F, Xin X J, Transl. 4th ed. Beijng: Publishing House of Electronics Industry, 2016: 60.

[22] Aleksic S, Hipp F, Winkler D, et al. Perspectives and limitations of QKD integration in metropolitan area networks[J]. Optics Express, 2015, 23(8): 10359.

[23] 王留军. 量子密钥分发与经典光通信融合的实验研究[D]. 合肥: 中国科学技术大学, 2016.

    Wang LJ. Experimental study of multiplexing quantum key distribution and classical optical communications[D]. Hefei: University of Science and Technology of China, 2016.

[24] 王宇帅, 李云霞, 石磊, 等. 基于DWDM的经典-量子信息共信道同传系统噪声分析[J]. 量子光学学报, 2014, 20(4): 296-301.

    Wang Y S, Li Y X, Shi L, et al. The analysis of the noise in multiplexed classical and quantum transmission system based on DWDM[J]. Acta Sinica Quantum Optica, 2014, 20(4): 296-301.

[25] Zhu F, Zhang C H, Liu A P, et al. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J]. Physics Letters A, 2016, 380(16): 1408-1413.

程康, 周媛媛, 王欢. 测量设备无关的经典-量子信号共纤传输方案[J]. 激光与光电子学进展, 2019, 56(8): 082701. Kang Cheng, Yuanyuan Zhou, Huan Wang. Scheme of Measurement-Device-Independent Classical-Quantum Signal Transmission in Shared Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(8): 082701.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!