光学学报, 2013, 33 (6): 0614004, 网络出版: 2013-05-31   

2 μm硅基掺钬光纤激光器极限功率分析

Analysis of Maximum Extractable Power of 2 μm Holmium-Doped Silica Fiber Lasers
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
研究了掺钬光纤激光极限输出功率,综合考虑热效应、光纤损伤、抽运亮度以及非线性效应的影响,计算了硅基掺钬光纤激光两种常规的抽运方式(掺镱激光抽运和掺铥激光抽运)在连续运转情况下的极限功率。计算结果表明,在现有工艺条件下,两种抽运方式的极限功率分别是29.9 kW和70.2 kW。功率的受限因素主要包括抽运亮度、热透镜效应和受激拉曼散射(SRS),其中进一步提高抽运亮度是当前实现掺钬光纤激光高功率输出的主要有效途径。考虑了相应的单频激光输出以及受单模条件限制时的极限功率和受限因素。对两种抽运方案比较可得,掺铥激光抽运方案更具高功率输出优势。
Abstract
We study the power limit of holmium-doped fiber lasers with the consideration of thermal effects, optical damage effect, brightness of pump source and nonlinear effects. Power limits and physical limits of holmium-doped silica fiber lasers in both pump regions (pumped with ytterbium-doped or thulium-doped laser source) are calculated. It is found that using both of the two pump regions, separately, based on current technical conditions, power limits of broad bandwidth holmium-doped fiber lasers are 29.9 kW and 70.2 kW, respectively. Limits to power now are, in fact, brightness of the pump sources, thermal lens effect and stimulated Raman scattering (SRS), and thus to improve the brightness of the pump sources is an effective method to promote high output power of holmium-doped fiber lasers. The situations of fiber lasers with single-frequency and strict single-mode operation are considered. At the same time, fiber laser pumped with a thulium-doped laser source has an advantage for achieving higher output power.
参考文献

[1] Samuli Kivist, Tommi Hakulinen, Mircea Guina et al.. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser [J]. IEEE Photon. Technol. Lett., 2007, 19(12): 934~936

[2] T. Ehrenreich, R. Leveile, I. Majid et al.. 1 kW, all-glass Tmfiber laser [C]. SPIE, 2010, 7850: 785016

[3] G. D. Goodno, L. D. Book, J. E. Rothenberg. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier [J]. Opt. Lett., 2009, 34(8): 1204~1206

[4] Alexander Hemming, Shayne Bennetts, Nikita Simakov et al.. Development of resonantly cladding-pumped holmium-doped fibre lasers [C]. SPIE, 2012, 8237: 82371J

[5] A. S. Kurkov, V. V. Dvoyrin, A. V. Marakulin. All-fiber 10 W holmium lasers pumped at λ=1.15 μm [J]. Opt. Lett., 2010, 35(4): 490~492

[6] P. A. Budni, L. A. Pomeranz, M. L. Lemons et al.. Efficient mid-infrared laser using 1.9-μm-pumped HoYAG and ZnGeP2 optical parametric oscillators [J]. J. Opt. Soc. Am. B, 2000, 17(5): 723~728

[7] 杨昆, 任秋实, 魏石刚 等. 2 μm铥(Tm)激光器在生物医学中的应用[J]. 激光与光电子学进展, 2005, 42(9): 52~56

    Yang Kun, Ren Qiushi, Wei Shigang et al.. Application of 2 μm Tm laser on biomedicine [J]. Laser & Optoelectronics Progress, 2005, 42(9): 52~56

[8] 黎大军, 杜戈果. 掺铥光纤激光器研究进展[J]. 激光技术, 2007, 31(5): 540~543

    Li Dajun, Du Geguo. The recent research progress of Tm3+ doped fiber lasers[J]. Laser Technology, 2007, 31(5): 540~543

[9] J. Nilsson, J. K. Sahu, Y. Jeong et al.. High power fiber lasers: new developments[C]. SPIE, 2003, 4974: 50~59

[10] 周军. 连续波掺镱双包层光纤激光器研究 [D]. 上海: 中国科学院上海光学精密机械研究所, 2004

    Zhou Jun. Study on Continuous-Wave Ytterbium-Doped Double-Clad Fiber Lasers [D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2004

[11] 刘颂豪. 光纤激光器的新进展 [J]. 光电子技术与信息, 2003, 16(1): 1~8

    Liu Songhao. New development of fiber laser [J]. Optoelectronic Technology & Information, 2003, 16(1): 1~8

[12] 漆云凤, 刘驰, 周军 等. 128 W单频线偏光纤放大器特性研究 [J]. 物理学报, 2010, 59(6): 3942~3947

    Qi Yunfeng, Liu Chi, Zhou Jun et al.. High power narrow linewidth single-frequency line-polarized fiber amplifier based on master-oscillator power amplifier technology [J]. Acta Physica Sinica, 2010, 59(6): 3942~3947

[13] D. C. Hanna, R. M. Percival, R. G. Smart et al.. Continuous-wave oscillation of holmium-doped silica fiber laser [J]. Electron. Lett., 1989, 25(9): 593~594

[14] J. W. Dawson, M. J. Messerly, J. E. Heebner et al.. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials [C]. SPIE, 2010, 7686: 768611

[15] 朱家健, 杜文博, 周朴 等. 单模光纤极限功率的数值研究[J]. 物理学报, 2012, 61(6): 064209

    Zhu Jiajian, Du Wenbo, Zhou Pu et al.. Numerical study on power limit of single-mode fiber lasers [J]. Acta Physica Sinica, 2012, 61(6): 064209

[16] Cesar Jauregui, Jens Limpert, Andreas Tünnermann. On the Raman threshold of passive large mode area fibers [C]. SPIE, 2011, 7914: 791408

[17] R. Andrew Motes, Richard W. Berdine. Introduction to High-Power Fiber Lasers [M]. Albuquerque: Directed Energy Professional Society, 2009. 130

[18] A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov et al.. Holmium fibre laser with record quantum efficiency [J]. Quantum Electronics, 2011, 41(6): 492~494

[19] Stuart D. Jackson. Midinfrared holmium fiber lasers [J]. IEEE J. Quantum Electron., 2006, 42(2): 187~191

[20] Typical Dilas LD data sheet. (www.dilas.com.cn)

[21] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives [J]. J. Opt. Soc. Am. B, 2010, 27(11): B63~B92

[22] F. Rser, C. Jauregui, J. Limpert. Power scaling of high brightness 980 nm Yb-doped fiber laser: detailed study and experiment [C]. Advanced Solid-State Photonics, 2009. TuA2

[23] 肖虎, 冷进勇, 吴武明 等. 同带抽运高效率光纤放大器 [J]. 物理学报, 2011, 60(12): 124207

    Xiao Hu, Leng Jinyong, Wu Wuming et al.. High efficiency tandem-pumped fiber amplifier [J]. Acta Physica Sinica, 2011, 60(12): 124207

[24] Typical Nufern fiber laser data sheet. (www.nufern.com)

[25] J. W. Dawson, M. J. Messerly, R. J. Beach et al.. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power [J]. Opt. Express, 2008, 16(17): 13240~13266

朱亚东, 周朴, 张汉伟, 王小林, 郭少锋. 2 μm硅基掺钬光纤激光器极限功率分析[J]. 光学学报, 2013, 33(6): 0614004. Zhu Yadong, Zhou Pu, Zhang Hanwei, Wang Xiaolin, Guo Shaofeng. Analysis of Maximum Extractable Power of 2 μm Holmium-Doped Silica Fiber Lasers[J]. Acta Optica Sinica, 2013, 33(6): 0614004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!