量子光学学报, 2018, 24 (1): 55, 网络出版: 2018-09-06   

带有T型腔的MIM波导的法诺共振特性研究

Study on the Characteristics of Fano Resonance in MIM Waveguide side-Coupled with a T-shaped Cavity
作者单位
1 山西大学 物理电子工程学院,山西 太原 030006
2 山西大学 现代教育技术学院,山西 太原 030006
3 山西大学 物理电子工程学院,山西 太原 030006:
摘要
设计了一种带有枝节的金属-介质-金属(MIM)波导与T型谐振腔侧耦合的表面等离子体光波导结构。利用有限元法(FEM),数值分析了改变耦合距离、T型腔几何尺寸及其不对称性、枝节高度对法诺(Fano)共振谱线的影响。结合电磁场分布进一步揭示了Fano共振现象产生的物理机理,由此可以动态调节表面等离子体波在结构中传输时产生的Fano共振特性。另外,研究表明在T型腔内填充不同折射率的材料,利用所设计的波导结构可以实现灵敏度高达940 nm/RIU的纳米尺度的折射率传感器。最后研究了结构的慢光传输特性,可以在Fano峰值附近实现约0.025 ps的光学延迟。这种新型的表面等离子体光波导可能会在光子器件集成、慢光效应及纳米传感领域有着较大的应用前景。
Abstract
We designed a simple Fano resonant structure composed of a metal-insulator-metal (MIM) plasmonic waveguide with a stub side-coupled to a T-shaped cavity.The finite element method (FEM) was used when the dependences of the electromagnetic field distribution and the Fano spectra on the coupling distance, the size and asymmetry of the T cavity and the height of the stub are analyzed numerically to further reveal the physical mechanism of the Fano resonance. Based on the results, a dynamically adjustable plasmonic Fano resonance can be obtained. In addition, studies also show that by changing the refractive index of the materials filled in the T-shaped cavity, a sensor of high sensitivity of about 940nm/RIU can be achieved in terms of the proposed waveguide structure. The investigation of the slow light properties shows that one can achieve decay time of about 0.025ps in the vicinity of the Fano peak. This new type of surface plasmon optical waveguide can have wide applications in the field of photonic device integration, slow light effects and nano sensing.
参考文献

[1] Dai D,He S.A silicon-based Hybrid Plasmonic Waveguide with a Metal Cap for a Nano-scale Light Confinement[J].Opt.Express,2009,17(19):16646-16653.DOI:10.1364/OE.17.016646.

[2] Wang L,Li W,Jiang X.Tunable Control of Electromagnetically Induced Transparency Analogue in a Compact Graphene-based Waveguide[J].Opt Lett,2015,40(10):2325-2328.DOI:10.1364/OL.40.002325.

[3] Li H J,Wang L L,Zhai X.Plasmonically Induced Absorption and Transparency Based on MIM Waveguides with Concentric Nanorings[J].IEEE Photon.Tech.Lett,2016,28(13):1454-1457.DOI:10.1109/LPT.2016.2554123.

[4] Gao Y,Zhan S,Liu Q,et al.Controllable Plasmonic Sensing Based on Fano Resonance in a Cavity Coupled Defective MDM Waveguide[J].J Phys D:Appl Phys,2016,49(26):265109.DOI:10.1088/0022-3727/49/26/265109.

[5] Miroshnichenko A E,Flach S,Kivshar Y S.Fano Resonances in Nanoscale Structures[J].Rev Mod Phys,2010,82(3):2257.DOI:10.1103/RevModPhys.82.2257.

[6] Mirin N A,Bao K,Nordlander P.Fano Resonances in Plasmonic Nanoparticle Aggregates[J].J Phys Chem A,2009,113(16):4028-4034.DOI:10.1021/jp810411q.

[7] Chang W S, Lassiter J B, Swanglap P,et al.A Plasmonic Fano Switch [J].Nano Lett,2012,12(9):4977-4982.DOI:10.1021/nl302610v.

[8] Li Z,Cakmakyapan S,Butun B,et al.Fano Resonances in THz Metamaterials Composed of Continuous Metallic Wires and Split Ring Resonators[J].Opt Express,2014,22(22):26572-26584.DOI:10.1364/OE.22.026572.

[9] Qi J,Chen Z,Chen J,et al.Independently Tunable Double Fano Resonances in Asymmetric MIM Waveguide Structure[J].Opt Express,2014,22(12):14688-14695.DOI:10.1364/OE.22.014688.

[10] Pang S,Huo Y,Xie Y,et al.Tunable Electromagnetically Induced Transparency-Like in Plasmonic Stub Waveguide with Cross Resonator[J].Plasmonics,2016,12:1161-1168.DOI:10.1007/s11468-016-0371-6.

[11] Wen K,Hu Y,Chen L,et al.Single/Dual Fano Resonance Based on Plasmonic Metal-Dielectric-Metal Waveguide [J].Plasmonics,2016,11:315-321.DOI:10.1007/s11468-015-0056-6.

[12] Yang B, Hu G, Zhang R,et al.Fano Resonances in a Plasmonic Waveguide System Composed of Stub Coupled with a Square Cavity Resonator[J].J Opt,2016,18(5): 055002.DOI: 10.1088/2040-8978/18/5/055002.

[13] Qi J W,Chen Z Q,Chen J,et al.Independently Tunable Double Fano Resonances in Asymmetric MIM Waveguide Structure[J].Opt.Express,2014,22(12):14688-14695.DOI: 10.1364/OE.22.014688.

[14] Zhan S P,Peng Y Y,He Z H,et al.Tunable Nanoplasmonic Sensor Based on the Asymmetric Degee of Fano Resonance in MDM Waveguide[J].Sci Rep,2016,6:22428.DOI:10.1038/srep22428.

[15] Chen Z, Song X, Duan G,et al.Multiple Fano Resonances Control in MIM Side-coupled Cavities Systems[J].IEEE Photon J,2015,7(3): 2701009. DOI: 10.1109/JPHOT.2015.2433012.

[16] Chen Z, Yu L. Multiple Fano Resonances Based on Different Waveguide Modes in a Symmetry Breaking Plasmonic System[J].IEEE Photon J, 2014,6(6): 4802208. DOI: 10.1109/JPHOT.2014.2368779.

[17] Huang Y, Ma L, Hou M,et al.Universal Near-field Interference Patterns of Fano Resonances in Two-dimensional Plasmonic Crystals [J].Plasmonics, 2016, 11(5): 1377-1383. DOI: 10.1007/s11468-016-0187-4.

[18] Francescato Y, Giannini V, Maier S A. Plasmonic Systems Unveiled by Fano Resonances[J].ACS nano,2012,6(2):1830-1838.DOI: 10.1021/nn2050533.

[19] Gai H, Wang J, Tian Q. Modified Debye Model Parameters of Metals Applicable for Broadband Calculations[J].Appl Opt, 2007,46(12): 2229-2233.DOI: 10.1364/AO.46.002229.

[20] Kim K Y, Cho Y K, Tae H S,et al.Light Transmission Along Dispersive Plasmonic Gap and Its Subwavelength Guidance Characteristics[J].Opt Express,2006,14(1): 320-330. DOI: 10.1364/OPEX.14.000320.

[21] Zhang Q, Huang X G, Lin X S,et al.A Subwavelength Coupler-type MIM Optical Filter[J].Opt Express,2009,17(9):7549-7554.DOI:10.1364/OE.17.007549.

[22] Zhang X Y,Wang,L L,Chen Z,et al.The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J].Chin Phys Lett,2015,32(5): 054209-4.DOI:10.1088/0256-307X/32/5/054209.

[23] Lin X S,Huang X G.Tooth-shaped Plasmonic Waveguide Filters with Nanometeric Sizes[J].Opt Lett, 2008,33(23):28742876.DOI:10.1364/OL.33.002874

[24] Wen K,Yan L,Pan W,et al.Electromagnetically Induced Transparency-like Transmission in a Compact Side-coupled T-shaped Resonator [J].J Lightwave Technol,2014,32(9):1701-1707.DOI:10.1109/JLT.2014.2310236.

[25] Hu F,Yi H,Zhou Z.Wavelength Demultiplexing Structure Based on Arrayed Plasmonic Slot Cavities [J].Opt Lett,2011,36(8):1500-1502.DOI:10.1364/OL.36.001500.

[26] White J S,Veronis G,Yu Z,et al.Extraordinary Optical Absorption Through Subwavelength Slits [J].Opt Lett,2009,34(5):686-688.DOI:10.1364/OL.34.000686.

[27] Wang T,Zhang Y,Hong Z,et al.Analogue of Electromagnetically Induced Transparency in Integrated Plasmonics with Radiative and Subradiant Resonators[J].Opt Express,2014,22(18):21529-21534.DOI:10.1364/OE.22.021529.

[28] Li X,Wei Z,Liu Y,et al.Analogy of Electromagnetically Induced Transparency in Plasmonic Nanodisk with a Square Ring Resonator[J].Phys Lett A,2016,380(1):232-237. DOI: 10.1016/j.physleta.2015.10.035.

[29] Wei W,Nong J,Tang L,et al.Conformal Graphene-decorated Nanofluidic Sensors Based on Surface Plasmons at Infrared Frequencies[J].Sensors,2016,16(6):899.DOI:10.3390/s16060899.

[30] Lu H,Liu X,Mao D,et al.Plasmonic Nanosensor Based on Fano Resonance in Waveguide-coupled Rsonators [J].Opt Lett,2012,37(18):3780-3782.DOI:10.1364/OL.37.003780.

[31] Ni B,Chen X Y,Xiong D Y,et al.Infrared Plasmonic Refractive Index-sensitive Nanosensor Based on Electromagnetically Induced Transparency of Waveguide Resonator Systems[J].Opt Quant Electron,2015,47(6):1339-1346.DOI:10.1007/s11082-014-0059-0.

[32] Xu H,Li H,Li B,et al.Influential and Theoretical Analysis of Nano-defect in the Stub Resonator[J].Sci Rep,2016,6:30877.DOI:10.1038/srep30877.

[33] Lu H,Liu X,Mao D.Plasmonic Analog of Electromagnetically Induced Transparency in Multi-nanoresonator-coupled Waveguide Systems[J].Phys Rev A,2012,85(5):053803.DOI:10.1103/PhysRevA.85.053803.

吴敌, 殷俊, 田晋平, 杨荣草. 带有T型腔的MIM波导的法诺共振特性研究[J]. 量子光学学报, 2018, 24(1): 55. WU Di, YIN Jun, TIAN Jin-ping, YANG Rong-cao. Study on the Characteristics of Fano Resonance in MIM Waveguide side-Coupled with a T-shaped Cavity[J]. Acta Sinica Quantum Optica, 2018, 24(1): 55.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!