中国激光, 2014, 41 (6): 0605002, 网络出版: 2014-04-16   

高空湍流影响下紫外光多径散射链路模型

Ultraviolet Multipath Scattering Link Model under the Influence of High Altitude Turbulence
作者单位
空军工程大学信息与导航学院, 陕西 西安 710077
摘要
考虑散射链路所在高空大气中温度、压强、臭氧浓度和湍流垂直强度的分布规律,依据Rayleigh散射理论,提出紫外光多径散射链路模型。将散射体划分为多个散射元,各散射元对应一组路径,并依照不同路径划分信号光,计算其信号强度;利用对数正态分布和非直视链路的湍流模型,分别计算不同路径的信号强度概率密度分布;用所有概率密度函数卷积得到接收端各路径信号叠加的强度分布和链路损耗。根据实际大气环境仿真得到:新模型得到的信号强度概率密度分布较原模型更集中,紫外光的消光系数受吸收系数影响显著,二者垂直分布曲线只在15 km以下略有差异。在高空2~14 km范围内,当收发端位于11 km左右闪烁指数存在极大值,而收发端位于6 km左右闪烁指数最小。综合考虑湍流效应和链路损耗,高空紫外光通信可将收发端安置于10 km高度以下。
Abstract
Considering the air pressure, temperature, ozone concentration and turbulence vertical distribution of scattering communication link in the upper-air, a ultraviolet multipath scattering ling model is modified, combined with Rayleigh scattering theory. The scattering volume is divorced into scattering elements and each element corresponds to every path. Signal strengths of each beams of laser divorced according to different paths are computed respectively. The probability density districutions of each non-line-of-sight signal strengths are calculated by logarithm-normal distribution and non-line-of-sight link turbulence model. Finally, total signal strength probability densities of each path signal in receiving terminal and the link losses are got by the way of each probability density convolutions. According to the factual atmosphere environment, the results show that the newly built probability density distribution is more concentrated. The differential distinction between extinction coefficient and absorption coefficient vertical distribution functions lies 15 km, due to the great impact of ozone absorption. At the range from 2 km to 14 km in the upper-air, scintillation index is higher with transmitter and receiver at the height of 11 km, while it is the lowest with transmitter and receiver at the height of 6 km. Considering turbulence and path loss, transmitter and receiver can be set below 10 km in the upper-air when ultraviolet communication is used in high atmosphere.
参考文献

[1] Gang Chen, Zhengyuan Xu, Brian M Sadler. Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels[J]. Opt Express, 2010, 18(10): 10500-10509.

[2] Robert J Drost, Terrence J Moore, Brian M Sadler. Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications[C]. SPIE, 2011, 8038: 803802.

[3] Dahai Han, Yile Liu, Kai Zhang, et al.. Theoretical and experimental research on diversity reception technology in NLOS UV communication system[J]. Opt Express, 2012, 20(14): 15833-15842.

[4] Gang Chen, Zhengyuan Xu, Brian M Sadler. Experimental demonstration of non-line-of-sight ultraviolet communication channel characteristics[C]. SPIE, 2010, 7814: 781407.

[5] M A Elshimy, S Hranilovic. Impact of finite receiver-aperture size in a non-line-of-sight single-scatter propagation model[J]. J Opt Soc Am A, 2011, 28(12): 2568-2576.

[6] Mohamed A Elshimy, Steve Hranilovic. Non-line-of-sight single-scatter propagation model for noncoplanar geometries[J]. J Opt Soc Am A, 2011, 28(3): 420-428.

[7] Haipeng Ding, Gang Chen, Arun K Majumdar, et al.. Turbulence modeling for non-line-of-sight ultraviolet scattering channels[C]. SPIE, 2011, 8038: 80380J.

[8] Houfei Xiao, Yong Zuo, Jian Wu, et al.. Bit-error-rate performance of non-line-of-sight UV transmission with spatial diversity reception[J].Opt Lett, 2012, 37(19): 4143-4145.

[9] 柯熙政. 紫外光自组织网络理论[M]. 北京: 科学出版社, 2011. 7-86.

    Ke Xizheng. Theory of UV Ad Hoc Networks Networks[M]. Beijing: Science Press, 2011. 7-86.

[10] 王荣阳, 刘福浩, 李向阳. 紫外光通信误码率测试系统设计[J]. 半导体光电, 2013, 33(5): 707-710.

    Wang Rongyang, Liu Fuhao, Li Xiangyang. Design of BER measurement system for UV communication[J]. Semiconductor Optoelectronics, 2013, 33(5): 707-710.

[11] 吕凤飞, 施军, 彭光辉, 等. 基于FPGA的紫外光调制技术研究[J]. 光电子技术, 2013, 33(1): 45-53.

    Lü Fengfei, Shi Jun, Peng Guanghui, et al.. Research on modulation technology of ultraviolet communication system based on FPGA[J]. Optoelectronic Technology, 2013, 33(1): 45-53.

[12] 侯倩, 李晓毅, 侯志昊, 等. 不同天气对紫外光非视距传输的影响[J]. 通信对抗, 2011, (3): 13-15.

    Hou Qian, Li Xiaoyi, Hou Zhihao, et al.. Effects of different weathers on UV-NOLS propagation[J]. Communication Countermeasures, 2011, (3): 13-15.

[13] 李晓峰. 星地激光通信链路原理与技术[M]. 北京: 国防工业出版社, 2011.

    Li Xiaofeng. The Principle and Technology of the Satellite-to-Ground Laser Communication Links[M]. Beijing: National Defence Industry Press, 2011.

[14] 麦卡特尼. 大气光学分子和粒子散射[M]. 潘乃先, 译. 北京: 科学出版社, 1988. 210-216.

    Earl J McCartney. Optics of the Atmosphere Scattering by Molecules and Particles[M]. Pan Naixian, Transl. Beijing: Science Press, 1988. 210-216.

[15] 金群峰. 大气折射率影响因素的研究[D]. 浙江: 浙江大学, 2006. 48-51.

    Jin Qunfeng. The Infulences of Refractive Index of Air[D]. Zhejiang: Zhejiang University, 2006. 48-51.

[16] Ma Baoke. Study on the Related Problems of (Light) Beam Propagation in the Atmosphere Turbulence[D]. Shannxi: Xidian University, 2008.

[17] 郑永光, 陈鲁言, 陈尊裕, 等. 2001年春季临安、昆明和香港臭氧垂直分布特征的对比分析[J]. 北京大学学报(自然科学版), 2005, 41(1): 106-109.

    Zheng Yongguang, Chen Luyan, Chen Zunyu, et al.. Comparison of characteristics of ozone vertical distribution above Lin′an, Kunming, and Hong Kong during Spring 2001[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(1): 106-109.

强若馨, 赵尚弘, 王翔, 刘韵. 高空湍流影响下紫外光多径散射链路模型[J]. 中国激光, 2014, 41(6): 0605002. Qiang Ruoxin, Zhao Shanghong, Wang Xiang, Liu Yun. Ultraviolet Multipath Scattering Link Model under the Influence of High Altitude Turbulence[J]. Chinese Journal of Lasers, 2014, 41(6): 0605002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!