Advanced Photonics, 2021, 3 (1): 014002, Published Online: Jan. 8, 2021   

Generation of polarization and phase singular beams in fibers and fiber lasers Download: 1078次

Author Affiliations
1 Northwestern Polytechnical University, School of Physical Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China
2 Shenzhen University, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen, China
Copy Citation Text

Dong Mao, Yang Zheng, Chao Zeng, Hua Lu, Cong Wang, Han Zhang, Wending Zhang, Ting Mei, Jianlin Zhao. Generation of polarization and phase singular beams in fibers and fiber lasers[J]. Advanced Photonics, 2021, 3(1): 014002.

References

[1] N. M. Litchinitser. Structured light meets structured matter. Science, 2012, 337(6098): 1054-1055.

[2] A. Forbes. Structured light from lasers. Laser Photonics Rev., 2019, 13(11): 1900140.

[3] D. Cozzolino, et al.. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics, 2019, 3(4): 046005.

[4] H. Sroor, et al.. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 2020, 14(8): 498-503.

[5] J. Liu, et al.. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light-Sci. Appl., 2018, 7(3): 17148.

[6] J. Durnin, J. J. Miceli, J. H. Eberly. Comparison of Bessel and Gaussian beams. Opt. Lett., 1988, 13(2): 79-80.

[7] T. Wulle, S. Herminghaus. Nonlinear optics of Bessel beams. Phys. Rev. Lett., 1993, 70(10): 1401-1404.

[8] J. Li, et al.. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater., 2015, 25(5): 704-710.

[9] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 2009, 3(1): 1-57.

[10] S. Ramachandran, P. Kristensen. Optical vortices in fiber. Nanophotonics, 2013, 2(5-6): 455-474.

[11] Z. Chen, M. Segev. Self-trapping of an optical vortex by use of the bulk photovoltaic effect. Phys. Rev. Lett., 1997, 78(15): 2948-2951.

[12] B. Y. Wei, et al.. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl. Phys. Lett., 2018, 112(12): 121101.

[13] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 2011, 3(2): 161-204.

[14] J. Wang. Data information transfer using complex optical fields: a review and perspective. Chin. Opt. Lett., 2017, 15(3): 030005.

[15] J. Liu, et al.. Multidimensional entanglement transport through single-mode fiber. Sci. Adv., 2020, 6(4): eaay0837.

[16] A. D. Wang, et al.. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express, 2018, 26(8): 10038-10047.

[17] M. R.Dennis, K.O’Holleran, M. J.Padgett, “Singular optics: optical vortices and polarization singularities,” in Progress in Optics, and E.Wolf, Ed., Vol. 53, pp. 293363, Elsevier (2009).

[18] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 2015, 40(4): 597-600.

[19] J. Durnin, J. Miceli, J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett., 1987, 58(15): 1499-1501.

[20] G. A. Siviloglou, et al.. Observation of accelerating Airy beams. Phys. Rev. Lett., 2007, 99(21): 213901.

[21] Z. Y. Rong, et al.. Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators. Opt. Express, 2014, 22(2): 1636-1644.

[22] N. Zhou, J. Liu, J. Wang. Reconfigurable and tunable twisted light laser. Sci. Rep., 2018, 8(1): 11394.

[23] D. Pohl. Operation of a ruby laser in the purely transverse electric mode TE01. Appl. Phys. Lett., 1972, 20(7): 266-267.

[24] F. Enderli, T. Feurer. Radially polarized mode-locked Nd:YAG laser. Opt. Lett., 2009, 34(13): 2030-2032.

[25] L. Li, et al.. High repetition rate Q-switched radially polarized laser with a graphene-based output coupler. Appl. Phys. Lett., 2014, 105(22): 221103.

[26] D. Naidoo, et al.. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 2016, 10(5): 327-332.

[27] Z. Qiao, et al.. Generating high-charge optical vortices directly from laser up to 288th order. Laser Photonics Rev., 2018, 12(8): 1800019.

[28] B. Huang, et al.. Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation. J. Opt., 2018, 20(2): 024016.

[29] X. L. Wang, et al.. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 2007, 32(24): 3549-3551.

[30] Y. W. Zhao, et al.. Intracavity cylindrical vector beam generation from all-PM Er-doped mode-locked fiber laser. Opt. Express, 2019, 27(6): 8808-8818.

[31] K. Huang, et al.. Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser. Opt. Lett., 2018, 43(16): 3933-3936.

[32] X. L. Wang, et al.. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett., 2010, 105(25): 253602.

[33] J. Lin, et al.. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett., 2013, 13(9): 4269-4274.

[34] B. Y. Wei, et al.. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 2014, 26(10): 1590-1595.

[35] A. O. Semkin, S. N. Sharangovich. Formation of optical vortices by controllable holographic diffraction structures in liquid crystal-photopolymer compositions. Ferroelectrics, 2019, 544(1): 104-111.

[36] P. Li, et al.. Generation of perfect vectorial vortex beams. Opt. Lett., 2016, 41(10): 2205-2208.

[37] E. Brasselet, et al.. Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum. Appl. Phys. Lett., 2010, 97(21): 211108.

[38] K. T. Gahagan, G. A. Swartzlander. Optical vortex trapping of particles. Opt. Lett., 1996, 21(11): 827-829.

[39] X. Cai, et al.. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363-366.

[40] G. K. L. Wong, et al.. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science, 2012, 337(6093): 446-449.

[41] Z. Li, et al.. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photonics Rev., 2018, 12(11): 1870049.

[42] A. Faßbender, et al.. Invited article: direct phase mapping of broadband Laguerre-Gaussian metasurfaces. APL Photonics, 2018, 3(11): 110803.

[43] S. Yu, et al.. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett., 2016, 108(24): 241901.

[44] Y. Yang, et al.. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 2014, 14(3): 1394-1399.

[45] J. Chen, C. H. Wan, Q. W. Zhan. Vectorial optical fields: recent advances and future prospects. Sci. Bull., 2018, 63(1): 54-74.

[46] L. Zou, et al.. Azimuthally polarized, passively Q-switched Yb-doped fiber laser. Opt. Commun., 2015, 355: 181-185.

[47] D. Lin, et al.. Radially polarized and passively Q-switched fiber laser. Opt. Lett., 2010, 35(21): 3574-3576.

[48] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 2003, 91(23): 233901.

[49] S. E. Skelton, et al.. Trapping volume control in optical tweezers using cylindrical vector beams. Opt. Lett., 2013, 38(1): 28-30.

[50] C. Min, et al.. Focused plasmonic trapping of metallic particles. Nat. Commun., 2013, 4(1): 2891.

[51] X. Xie, et al.. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett., 2014, 113(26): 263901.

[52] D. Liu, et al.. Enhanced sensitivity of the Z-scan technique on saturable absorbers using radially polarized beams. J. Appl. Phys., 2016, 119(7): 073103.

[53] L. Allen, et al.. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185-8189.

[54] P. Lochab, P. Senthilkumaran, K. Khare. Near-core structure of a propagating optical vortex. J. Opt. Soc. Am. A, 2016, 33(12): 2485-2490.

[55] W. D. Zhang, et al.. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating. Opt. Lett., 2017, 42(3): 454-457.

[56] Q. Zhan. Properties of circularly polarized vortex beams. Opt. Lett., 2006, 31(7): 867-869.

[57] Y. Zhang, et al.. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Opt. Lett., 2015, 40(19): 4444-4447.

[58] B. J. McMorran, et al.. Electron vortex beams with high quanta of orbital angular momentum. Science, 2011, 331(6014): 192-195.

[59] H. Ren, et al.. On-chip noninterference angular momentum multiplexing of broadband light. Science, 2016, 352(6287): 805-809.

[60] J. Wang, et al.. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 2012, 6(7): 488-496.

[61] N. Bozinovic, et al.. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545-1548.

[62] L. S. Sui, et al.. Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Opt. Express, 2016, 24(1): 499-515.

[63] Z. Shen, et al.. Trapping and rotating of a metallic particle trimer with optical vortex. APL Photonics, 2016, 109(24): 241901.

[64] J. Ng, Z. Lin, C. T. Chan. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett., 2010, 104(10): 103601.

[65] V. G. Shvedov, et al.. Giant optical manipulation. Phys. Rev. Lett., 2010, 105(11): 118103.

[66] L. Yang, et al.. Targeted single-cell therapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vortices. Adv. Funct. Mater., 2019, 29(45): 1905745.

[67] K. Toyoda, et al.. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 2012, 12(7): 3645-3649.

[68] J. Leach, et al.. Quantum correlations in optical angle–orbital angular momentum variables. Science, 2010, 329(5992): 662-665.

[69] M. P. J. Lavery, et al.. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341(6145): 537-540.

[70] Y. W. Zhai, et al.. The radial Doppler effect of optical vortex beams induced by a surface with radially moving periodic structure. J. Opt., 2019, 21(5): 054002.

[71] M. D. Williams, et al.. Direct generation of optical vortices. Phys. Rev. A, 2014, 89(3): 033837.

[72] S. Franke-Arnold, L. Allen, M. Padgett. Advances in optical angular momentum. Laser Photonics Rev., 2008, 2(4): 299-313.

[73] Z. Hong, J. Zhang, B. W. Drinkwater. Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett., 2015, 114(21): 214301.

[74] A. Calabuig, et al.. Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays. Appl. Opt., 2013, 52(23): 5822-5829.

[75] H. Zhang, et al.. Dual-wavelength domain wall solitons in a fiber ring laser. Opt. Express, 2011, 19(4): 3525-3530.

[76] H. Zhang, et al.. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers. Phy. Rev. B, 2009, 80(5): 052302.

[77] X. Li, et al.. Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers. Opt. Commun., 2012, 285(6): 1356-1361.

[78] L. M. Zhao, et al.. Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser. Opt. Lett., 2007, 32(13): 1806-1808.

[79] T. Wang, et al.. High-order mode lasing in all-FMF laser cavities. Photonics Res., 2019, 7(1): 42-49.

[80] W. Zhang, et al.. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt. Express, 2016, 24(10): 10376-10384.

[81] Y. Han, et al.. Orbital angular momentum transition of light using a cylindrical vector beam. Opt. Lett., 2018, 43(9): 2146-2149.

[82] N. Bozinovic, et al.. Control of orbital angular momentum of light with optical fibers. Opt. Lett., 2012, 37(13): 2451-2453.

[83] H. A. Haus, W. Huang. Coupled-mode theory. Proc. IEEE, 1991, 79(10): 1505-1518.

[84] P. Z. Dashti, F. Alhassen, H. P. Lee. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Phys. Rev. Lett., 2006, 96(4): 043604.

[85] J. Dong, K. S. Chiang. Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings. IEEE Photonics Technol. Lett., 2015, 27(9): 1006-1009.

[86] M. Feng, et al.. Ultra-broadband mode converter using cascading chirped long-period fiber grating. IEEE Photonics J., 2019, 11(6): 7105610.

[87] Y. C. Guo, et al.. More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long period fiber gratings. Opt. Laser Technol., 2019, 118: 8-12.

[88] Y. C. Guo, et al.. All-fiber mode-locked cylindrical vector beam laser using broadband long period grating. Laser Phys. Lett., 2018, 15(8): 085108.

[89] R. Chen, et al.. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating. Opt. Lett., 2018, 43(4): 755-758.

[90] Y. Zhou, et al.. Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating. Appl. Phys. Lett., 2017, 110(16): 161104.

[91] Y. Wang, et al.. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev., 2019, 13(4): 1800313.

[92] X. Jiang, et al.. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx. Laser Photonics Rev., 2018, 12(2): 1700229.

[93] D. Li, et al.. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep., 2015, 5(1): 15899.

[94] K. Y. Song, et al.. High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm. IEEE Photonics Technol. Lett., 2002, 14(4): 501-503.

[95] X. H. Wang, et al.. All-fiber cylindrical vector beams multiplexing through a mode-selective coupler. IEEE J. Quantum Electron., 2019, 55(6): 6800408.

[96] F. Wang, et al.. Method of generating femtosecond cylindrical vector beams using broadband mode converter. IEEE Photonics Technol. Lett., 2017, 29(9): 747-750.

[97] H. Wan, et al.. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. Opt. Express, 2017, 25(10): 11444-11451.

[98] Z. Zhang, et al.. Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes. IEEE J. Sel. Top. Quantum., 2018, 24(3): 1100906.

[99] Y. Xu, et al.. Cylindrical vector beam fiber laser with a symmetric two-mode fiber coupler. Photonics Res., 2019, 7(12): 1479-1484.

[100] T. Wang, et al.. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J. Lightwave Technol., 2017, 35(11): 2161-2166.

[101] T. Wang, et al.. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams. Opt. Express, 2018, 26(9): 11850-11858.

[102] Y. P. Huang, et al.. High-order mode Yb-doped fiber lasers based on mode-selective couplers. Opt. Express, 2018, 26(15): 19171-19181.

[103] M. Lipson. Guiding, modulating, and emitting light on silicon—challenges and opportunities. J. Lightwave Technol., 2005, 23(12): 4222-4238.

[104] T. Grosjean, D. Courjon, M. Spajer. An all-fiber device for generating radially and other polarized light beams. Opt. Commun., 2002, 203(1): 1-5.

[105] D. Mao, et al.. Ultrafast all-fiber based cylindrical-vector beam laser. Appl. Phys. Lett., 2017, 110(2): 021107.

[106] B. Sun, et al.. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Opt. Lett., 2012, 37(4): 464-466.

[107] J. Lin, et al.. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation. Appl. Phys. Lett., 2015, 107(19): 191108.

[108] B. Sun, et al.. Mode-locked all-fiber laser producing radially polarized rectangular pulses. Opt. Lett., 2015, 40(8): 1691-1694.

[109] Y. Zhou, et al.. Self-starting passively mode-locked all fiber laser based on carbon nanotubes with radially polarized emission. Photonics Res., 2016, 4(6): 327-330.

[110] T. Liu, S. P. Chen, J. Hou. Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair. Opt. Lett., 2016, 41(24): 5692-5695.

[111] S. Z. Yao, et al.. All-fiber single-longitudinal-mode narrow linewidth fiber ring laser with cylindrical vector beam output. Laser Phys. Lett., 2018, 15(11): 115107.

[112] H. X. Li, et al.. A high-efficiency all-fiber laser operated in high-order mode using ring-core Yb-doped fiber. Ann. Phys., 2019, 531(10): 1900079.

[113] R. Zheng, et al.. An all-fiber laser generating cylindrical vector beam. Opt. Express, 2010, 18(10): 10834-10838.

[114] Y. Zhou, et al.. Actively mode-locked all fiber laser with cylindrical vector beam output. Opt. Lett., 2016, 41(3): 548-550.

[115] D. Mao, et al.. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers. Opt. Lett., 2018, 43(7): 1590-1593.

[116] Y. Yang, et al.. All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band. IEEE J. Sel. Top. Quantum. Electron., 2020, 26(4): 4500307.

[117] S. Ramachandran, P. Kristensen, M. F. Yan. Generation and propagation of radially polarized beams in optical fiber. Opt. Lett., 2009, 34(16): 2525-2527.

[118] W. D. Zhang, et al.. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Opt. Express, 2016, 24(17): 19278-19285.

[119] J. F. Lu, et al.. Dynamic mode-switchable optical vortex beams using acousto-optic mode converter. Opt. Lett., 2018, 43(23): 5841-5844.

[120] S. Li, et al.. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett., 2015, 40(18): 4376-4379.

[121] L. Fang, J. Wang. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings. Opt. Lett., 2015, 40(17): 4010-4013.

[122] Y. Zhao, et al.. Mode converter based on the long-period fiber gratings written in the two-mode fiber. Opt. Express, 2016, 24(6): 6186-6195.

[123] H. Wu, et al.. All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber. Opt. Lett., 2017, 42(24): 5210-5213.

[124] Y. Han, et al.. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings. Nanophotonics, 2018, 7(1): 287-293.

[125] H. Zhao, et al.. All-fiber second-order orbital angular momentum generator based on a single-helix helical fiber grating. Opt. Lett., 2019, 44(21): 5370-5373.

[126] X. D. He, et al.. All-fiber third-order orbital angular momentum mode generation employing an asymmetric long-period fiber grating. Opt. Lett., 2020, 45(13): 3621-3624.

[127] S. Yao, et al.. Tunable orbital angular momentum generation using all-fiber fused coupler. IEEE Photonics Technol. Lett., 2018, 30(1): 99-102.

[128] S. Pidishety, et al.. Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler. Opt. Lett., 2017, 42(21): 4347-4350.

[129] J. Q. Zheng, et al.. Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator. Photonics Res., 2018, 6(5): 396-402.

[130] D. Mao, et al.. Optical vortex fiber laser based on modulation of transverse modes in two mode fiber. APL Photonics, 2019, 4(6): 060801.

[131] S. H. Li, et al.. Generation of orbital angular momentum beam using fiber-to-fiber butt coupling. IEEE Photonics J., 2018, 10(4): 6601607.

[132] C. L. Fu, et al.. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber. Opt. Lett., 2018, 43(8): 1786-1789.

[133] Z. Xie, et al.. Integrated (de)multiplexer for orbital angular momentum fiber communication. Photonics Res., 2018, 6(7): 743-748.

[134] Y. F. Zhao, et al.. Meta-facet fiber for twisting ultra-broadband light with high phase purity. Appl. Phys. Lett., 2018, 113(6): 061103.

[135] D. Lin, et al.. Cladding-pumped ytterbium-doped fiber laser with radially polarized output. Opt. Lett., 2014, 39(18): 5359-5361.

[136] H. W. Zhang, et al.. Generation of orbital angular momentum modes using fiber systems. Appl. Sci., 2019, 9(5): 1033.

[137] S. Savovic, et al.. A transmission length limit for space division multiplexing in step-index silica optical fibres. J. Mod. Opt., 2019, 66(16): 1695-1700.

[138] J. Noda, K. Okamoto, Y. Sasaki. Polarization-maintaining fibers and their applications. J. Lightwave Technol., 1986, 4(8): 1071-1089.

[139] P. Gregg, P. Kristensen, S. Ramachandran. Conservation of orbital angular momentum in air-core optical fibers. Optica, 2017, 4(9): 1115-1116.

[140] E. M. Kim, et al.. Robust vector beam guidance assisted by stress-induced cylindrical anisotropy in highly germanium-doped-core fiber. ACS Photonics, 2019, 6(11): 3032-3038.

[141] Y. Yan, et al.. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes. Opt. Lett., 2012, 37(16): 3294-3296.

[142] Y. Yan, et al.. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs. Opt. Lett., 2012, 37(17): 3645-3647.

[143] N. K. Viswanathan, V. V. G. K. Inavalli. Generation of optical vector beams using a two-mode fiber. Opt. Lett., 2009, 34(8): 1189-1191.

[144] S. Ramachandran, et al.. Nonlinear generation of broadband polarisation vortices. Opt. Express, 2010, 18(22): 23212-23217.

[145] W. Zhang, et al.. Tunable-wavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex. J. Opt., 2018, 20(1): 014004.

[146] Y. S. Rumala, et al.. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt. Lett., 2013, 38(23): 5083-5086.

[147] C. Xu, et al.. All-fiber laser with flattop beam output using a few-mode fiber Bragg grating. Opt. Lett., 2018, 43(6): 1247-1250.

[148] N.Bozinovicet al., “Are orbital angular momentum (OAM/Vortex) states of light long-lived in fibers?” in Front. Opt. 2011/Laser Sci. XXVII, Optical Society of America, San Jose, California, p. LWL3 (2011).

[149] G. Volpe, G. P. Singh, D. Petrov. Optical tweezers with cylindrical vector beams produced by optical fibers. Proc. SPIE, 2004, 5514: 283-292.

[150] W. Qiao, et al.. Approach to multiplexing fiber communication with cylindrical vector beams. Opt. Lett., 2017, 42(13): 2579-2582.

[151] L. Yan, P. Kristensen, S. Ramachandran. Vortex fibers for STED microscopy. APL Photonics, 2019, 4(2): 022903.

[152] J. F. Yang, et al.. Cylindrical vector modes based Mach-Zehnder interferometer with vortex fiber for sensing applications. Appl. Phys. Lett., 2019, 115(5): 051103.

[153] F. F. Lu, et al.. Nanofocusing of surface plasmon polaritons on metal-coated fiber tip under internal excitation of radial vector beam. Plasmonics, 2019, 14(6): 1593-1599.

[154] F. F. Lu, et al.. Grating-assisted coupling enhancing plasmonic tip nanofocusing illuminated via radial vector beam. Nanophotonics, 2019, 8(12): 2303-2311.

[155] M. Liu, et al.. Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics, 2019, 8(5): 921-929.

[156] L. Zhang, et al.. Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy. Photonics Res., 2019, 7(12): 1447-1453.

[157] R. Ryf, et al.. Mode-division multiplexing over 96 km of few-mode fiber using coherent 66 MIMO processing. J. Lightwave Technol., 2012, 30(4): 521-531.

[158] E. V. Vasilyev, S. A. Shlenov, V. P. Kandidov. The multifocus structure of radiation upon femtosecond filamentation of an optical vortex in a medium with an anomalous group velocity dispersion. Opt. Spectrosc., 2019, 126(1): 16-24.

[159] A. Dakova, et al.. Vortex structures in optical fibers with spatial dependence of the refractive index. J. Optoelectron. Adv. Mater., 2019, 21(7–8): 492-498.

[160] H. Qin, et al.. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt. Lett., 2018, 43(9): 1982-1985.

[161] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 2017, 358(6359): 94-97.

[162] D. V. Kizevetter, et al.. Investigation of speckle structures formed by the optical vortices of fiber lightguides. J. Opt. Technol, 2015, 82(3): 174-177.

[163] A. Chong, et al.. Airy–Bessel wave packets as versatile linear light bullets. Nat. Photonics, 2010, 4(2): 103-106.

[164] Y. Song, et al.. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photonics, 2020, 2(2): 024001.

[165] X. Yang, et al.. High power LP11 mode supercontinuum generation from an all-fiber MOPA. Opt. Express, 2018, 26(11): 13740-13745.

[166] M. Kraus, J. Watzel, J. Berakdar. Radiation characteristics of nanoscopic structures driven by perfect optical vortex pulse. Opt. Commun., 2018, 427: 390-395.

[167] J. J. J. Nivas, et al.. Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams. Appl. Surf. Sci., 2017, 418: 565-571.

[168] X. Wang, et al.. Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser Photonics Rev., 2016, 10(5): 835-842.

[169] J. Sancho-Parramon, S. Bosch. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. ACS Nano, 2012, 6(9): 8415-8423.

Dong Mao, Yang Zheng, Chao Zeng, Hua Lu, Cong Wang, Han Zhang, Wending Zhang, Ting Mei, Jianlin Zhao. Generation of polarization and phase singular beams in fibers and fiber lasers[J]. Advanced Photonics, 2021, 3(1): 014002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!