红外与激光工程, 2017, 46 (8): 0822003, 网络出版: 2017-11-07  

高斯阵列光束自耦合特性的实验研究

Experimental study on the self-coupling characteristics of Gaussian array beams
作者单位
西安理工大学 自动化与信息学工程学院, 陕西 西安 710048
摘要
根据广义Huygens-Fresnel原理和修正von Karman谱模型, 推导出了径向分布高斯阵列光束经非相干合成后在大气湍流中传输时的光强分布解析表达式, 并对阵列光束自耦合特性随传输距离和径向分布半径的变化情况进行了数值分析, 最后对径向分布半径不同的阵列光束自耦合特性随传输距离的变化进行了测量。实验结果表明: 高斯阵列光束在大气湍流中水平传输时, 随着传输距离的增加阵列光束会从某一距离处耦合成一束, 且合成光束的平均光强呈类高斯分布; 相同传输条件下, 径向分布半径越小, 阵列光束的自耦合特性越好。
Abstract
Based on the generalized Huygens-Fresnel principle and the modified von Karman spectrum model, the analytic expressions for intensity distribution of radial Gaussian array beams after incoherent combination that propagation in the atmospheric turbulence were derived. And the self-coupling characteristics of array beams was analyzed numerically with the change of transmission distance and the radial radius. Finally self-coupling characteristics of array beam of different radial radius with the change of the transmission distance had been measured by using a beam analyzer. The experimental results show that when Gaussian array beams propagate in atmospheric turbulence horizontaly, array beam will combine a beam from a certain distance with the increasing of transmission distance. And the average intensity of the combined beam is like-Gaussian distribution; under the same transmission conditions, the smaller the radial radius, the better the self-coupling characteristics of the array beams is.
参考文献

[1] 吕百达. 强激光的传输与控制[M]. 北京: 国防工业出版社, 1999.

    Lv Baida. Propagation and Control of High Power Lasers[M]. Beijing: National Defense Industry Press, 1999. (in Chinese)

[2] 卢芳, 韩香娥. 高斯-谢尔模型阵列光束在湍流大气中的空间相干性[J]. 红外与激光工程, 2015, 44(1): 305-309.

    Lu Fang, Han Xiang′e. Spatial coherence properties of GSM array beams in turbulent atmosphere [J]. Infrared and Laser Engineering, 2015, 44(1): 305-309. (in Chinese)

[3] 李彪, 刘雁, 曾曙光, 等. 光纤激光阵列相干合束的研究. 激光技术, 2015, 39(5): 712-716.

    Li Biao, Liu Yan, Zeng Shuguang, et al. Study on coherent beam combination of fiber laser array[J]. Laser Technology, 2015, 39(5): 712-716. (in Chinese)

[4] 李宾中, 吕百达. 随机电磁光束阵列的光束传输变换特性[J]. 光学学报, 2011, 31(S1): s100406.

    Li Binzhong, Lv Baida. Propagation transform characteristics of beams from stochastic electromagnetic beam array[J]. Acta Optica Sinica, 2011, 31(S1): s100406. (in Chinese)

[5] Zhang Yongtao, Liu Lin, Zhao Chengliang, et al. Multi-Gaussian Schell-model vortex beam[J]. Physics Letters A, 2014, 378(9): 750-754.

[6] 任爱红, 张蓉竹, 孙年春. 偏振方向对阵列光束远场能量分布的影响[J]. 强激光与粒子束, 2010, 22(7): 1445-1448.

    Ren Aihong, Zhang Rongzhu, Sun Nianchun. Influence of polarization direction on far field distribution of laser array[J]. High Power Laser and Particle Beams, 2010, 22(7): 1445-1448. (in Chinese)

[7] Wang Haiyan, Li Xiangyin. Propagation properties of radial partially coherent flat-topped array beams in a turbulent atmosphere[J]. Optics Communications, 2010, 283(21): 4178-4189.

[8] 王炜, 何兵, 周军, 等. 光纤激光相干阵列远场光强分布的影响分析[J]. 光学学报, 2009, 29(8): 2248-2255.

    Wang Wei, He Bing, Zhou Jun, et al. Study on far-field intensity distribution of fiber laser used in coherent bearn combination[J]. Acta Optica Sinica, 2009, 29(8): 2248-2255. (in Chinese)

[9] 钟燕丽, 崔执凤, 石建平,等. 部分相干平顶光束序列在湍流大气中传输特性[J]. 激光技术, 2010, 34(4): 542-547.

    Zhong Yanli, Cui Zhifeng, Shi Jianping, et al. Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere[J]. Laser Technology, 2010, 34(4): 542-547. (in Chinese)

[10] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响[J]. 物理学报, 2014, 63(9): 094202.

    Tan Yi, Li Xinyang. Influence of filling factor on far-field intensity distribution in coherent beam combination[J]. Acta Phys Sin, 2014, 63(9): 094202. (in Chinese)

[11] 刘侠, 吴国华, 曹丁象, 等. 矢量多高斯-谢尔模型光束在大气湍流中上行链路中的传输特性[J]. 激光与光电子学进展, 2015, 52(2): 97-102.

    Liu Xia, Wu Guohua, Cao Dingxiang, et al. Propagation properties of electromagnetic gaussian multi-schell model beams through atmospheric turbulence in a slanted path[J]. Laser & Optoelectronics Progress, 2015, 52(2): 97-102. (in Chinese)

[12] Zhou Pu, Ma Yanxing, Wang Xiaolin, et al. Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere[J]. Applied Optics, 2009, 48(48): 5251-5258.

[13] Kashani F D, Rad M R H, Mahzoun M R, et al. Beam propagation analysis of a multi beam FSO system with partially flat-topped laser beams in turbulent atmosphere[J]. Optik, 2012, 123(10): 879-886.

[14] Liu Dajun, Wang Yaochuan, Yin Hongming. Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere[J]. Optics & Laser Technology, 2016, 78: 95-100.

[15] Andrews Larry C, Phillips Ronald L. Laser Beam Propagation Through Random Media [M]. Bellingham: SPIE optical Engineering Press, 2005: 195.

[16] 柯熙政, 张雅. FSO系统中部分相干阵列光束的传输特性研究[J]. 激光与光电子学进展, 2015, 53(10): 100601.

    Ke Xizheng, Zhang Ya. The propagation properties study of partially coherent array beams in FSO system[J]. Laser & Optoelectronics Progress, 2015, 53(10): 100601. (in Chinese)

柯熙政, 张雅. 高斯阵列光束自耦合特性的实验研究[J]. 红外与激光工程, 2017, 46(8): 0822003. Ke Xizheng, Zhang Ya. Experimental study on the self-coupling characteristics of Gaussian array beams[J]. Infrared and Laser Engineering, 2017, 46(8): 0822003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!