Frontiers of Optoelectronics, 2017, 10 (4): 329, 网络出版: 2018-01-17   

Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes

Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes
作者单位
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices,South China University of Technology, Guangzhou 510640, China
摘要
Abstract
Inkjet printing (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic lightemitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.
参考文献

[1] Blasse G, Bril A. A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12-Ce3+. Applied Physics Letters, 1967, 11(2): 53-55

[2] Brody T P, Asars J A, Dixon G D A. 6  6 inch 20 lines-per-inch liquid-crystal display panel. IEEE Transactions on Electron Devices, 1973, 20(11): 995-1001

[3] Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915

[4] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(6293): 539-541

[5] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354-357

[6] Baldo M A, O’brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998,395(6698): 151-154

[7] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428): 234-238

[8] Gather M C, K hnen A, Meerholz K. White organic light-emitting diodes. Advanced Materials, 2011, 23(2): 233-248

[9] ranlund T, Nyberg T, Roman L S, Svensson M, Ingan s O. Patterning of polymer light-emitting diodes with soft lithography. Advanced Materials, 2000, 12(4): 269-273

[10] Gather M C, K hnen A, Falcou A, Becker H, Meerholz K. Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Advanced Functional Materials, 2007, 17(2): 191-200

[11] Malinowski P E, Ke T H, Nakamura A, Chang T Y, Gokhale P, Steudel S, Janssen D, Kamochi Y, Koyama I, Iwai Y, Heremans P. 16.3: true-color 640 ppi OLED arrays patterned by CA i-line photolithography. SID Symposium Digest of Technical Papers, 2015, 46(1): 215-218

[12] Jin H, Sturm J C. 40.2: super-high resolution transfer printing for full-color OLED display patterning. Sid Symposium Digest of Technical Papers, 2009, 40(1): 597-599

[13] Calvert P. Inkjet printing for materials and devices. Chemistry of Materials, 2001, 13(10): 3299-3305

[14] Tekin E, Smith P J, Schubert U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008, 4(4): 703-713

[15] Singh M, Haverinen H M, Dhagat P, Jabbour G E. Inkjet printingprocess and its applications. Advanced Materials, 2010, 22(6): 673-685

[16] Zhan Z, An J, Wei Y, Tran V T, Du H. Inkjet-printed optoelectronics. Nanoscale, 2017, 9(3): 965-993

[17] Cummins G, Desmulliez M P Y. Inkjet printing of conductive materials: a review. Circuit World, 2012, 38(4): 193-213

[18] Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515-3535

[19] Huang F, Cheng Y J, Zhang Y, Liu M S, Jen A K Y. Crosslinkable hole-transporting materials for solution processed polymer lightemitting diodes. Journal of Materials Chemistry, 2008, 18(38): 4495-4509

[20] Huang F, Wu H, Cao Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010, 39(7): 2500-2521

[21] Meyer J, Hamwi S, Kr ger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Advanced Materials, 2012, 24(40): 5408-5427

[22] Liang X, Bai S,Wang X, Dai X, Gao F, Sun B, Ning Z, Ye Z, Jin Y. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46(6): 1730-1759

[23] Lee Y Z, Chen X, Chen S A, Wei P K, Fann W S. Soluble electroluminescent poly(phenylene vinylene)s with balanced electron- and hole injections. Journal of the American Chemical Society, 2001, 123(10): 2296-2307

[24] Saikia G, Singh R, Sarmah P J, Akhtar M W, Sinha J, Katiyar M, Iyer P K. Synthesis and characterization of soluble poly (pphenylene) derivatives for PLED applications. Macromolecular Chemistry and Physics, 2009, 210(24): 2153-2159

[25] Ding A L, Pei J, Lai Y H, Huang W. Phenylene-functionalized polythiophene derivatives for light-emitting diodes: their synthesis, characterization and properties. Journal of Materials Chemistry, 2001, 11(12): 3082-3086

[26] Lee J, Cho H J, Cho N S, Hwang D H, Kang J M, Lim E, Lee J I, Shim H K. Enhanced efficiency of polyfluorene derivatives: organic-inorganic hybrid polymer light-emitting diodes. Journal of Polymer Science Part A, Polymer Chemistry, 2006, 44(9): 2943- 2954

[27] Wang R,WangWZ, Yang G Z, Liu T, Yu J, Jiang Y. Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers. Journal of Polymer Science Part A, Polymer Chemistry, 2008, 46(3): 790-802

[28] Hou Q, Xu Y, Yang W, Yuan M, Peng J, Cao Y. Novel redemitting fluorene-based copolymers. Journal of Materials Chemistry, 2002, 12(10): 2887-2892

[29] Guan R, Xu Y, Ying L, Yang W, Wu H, Chen Q, Cao Y. Novel green-light-emitting hyperbranched polymers with iridium complex as core and 3, 6-carbazole-co-2, 6-pyridine unit as branch. Journal of Materials Chemistry, 2009, 19(4): 531-537

[30] Liang J, Zhao S, Jiang X F, Guo T, Yip H L, Ying L, Huang F, Yang W, Cao Y. White polymer light-emitting diodes based on exciplex electroluminescence from polymer blends and a single polymer. ACS Applied Materials & Interfaces, 2016, 8(9): 6164- 6173

[31] Liang J, Zhong Z, Li S, Jiang X F, Ying L, Yang W, Peng J, Cao Y. Efficient white polymer light-emitting diodes from single polymer exciplex electroluminescence. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(9): 2397- 2403

[32] Liu F, Tang C, Chen Q Q, Li S Z, Wu H B, Xie L H, Peng B, Wei W, Cao Y, Huang W. Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass. Organic Electronics, 2009, 10(2): 256-265

[33] Li Y, Li A Y, Li B X, Huang J, Zhao L, Wang B Z, Li J W, Zhu X H, Peng J, Cao Y, Ma D G, Roncali J. Asymmetrically 4,7- disubstituted benzothiadiazoles as efficient non-doped solutionprocessable green fluorescent emitters. Organic Letters, 2009, 11 (22): 5318-5321

[34] Fan Z, Cheng C, Yu S, Ye K, Sheng R, Xia D, Ma C, Wang X, Chang Y, Du G. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metalfree phthalocyanine. Optical Materials, 2009, 31(6): 889-894

[35] Inaoka S, Roitman D B, Advincula R C. Cross-linked polyfluorene polymer precursors: electrodeposition, PLED device characterization, and two-site co-deposition with poly (vinylcarbazole). Chemistry of Materials, 2005, 17(26): 6781-6789

[36] Gong X, Ostrowski J C, Bazan G C, Moses D, Heeger A J. Red electrophosphorescence from polymer doped with iridium complex. Applied Physics Letters, 2002, 81(20): 3711-3713

[37] Gong X, Ostrowski J C, Moses D, Bazan G C, Heeger A J. Electrophosphorescence from a polymer guest-host system with an iridium complex as guest: F rster energy transfer and charge trapping. Advanced Functional Materials, 2003, 13(6): 439-444

[38] Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123-2126

[39] Liu J, Zou J, Yang W,Wu H, Li C, Zhang B, Peng J, Cao Y. Highly efficient and spectrally stable blue-light-emitting polyfluorenes containing a dibenzothiophene-S, S-dioxide unit. Chemistry of Materials, 2008, 20(13): 4499-4506

[40] Li Y, Wu H, Zou J, Ying L, Yang W, Cao Y. Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S, S-dioxide isomers into polyfluorene backbone. Organic Electronics, 2009, 10(5): 901-909

[41] Liu J, Hu S, Zhao W, Zou Q, Luo W, Yang W, Peng J, Cao Y. Novel spectrally stable saturated blue-light-emitting poly[(fluorene)- co-(dioctyldibenzothiophene-S,S-dioxide)]s. Macromolecular Rapid Communications, 2010, 31(5): 496-501

[42] Zhao L, Zou J, Huang J, Li C, Zhang Y, Sun C, Zhu X, Peng J, Cao Y, Roncali J. Asymmetrically 9, 10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses. Organic Electronics, 2008, 9(5): 649-655

[43] Klimov V I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. Journal of Physical Chemistry B, 2006, 110(34): 16827-16845

[44] Bawendi M G, Steigerwald M L, Brus L E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annual Review of Physical Chemistry, 1990, 41(1): 477-496

[45] Alivisatos A P, Harris A L, Levinos N J, Steigerwald M L, Brus L E. Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum. Journal of Chemical Physics, 1988, 89(7): 4001-4011

[46] Wang Y, Suna A, McHugh J, Hilinski E F, Lucas P A, Johnson R D. Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs. Journal of Chemical Physics, 1990, 92(11): 6927-6939

[47] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2018

[48] Zhang F, He XW, LiWY, Zhang Y K. One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells. Journal of Materials Chemistry, 2012, 22(41): 22250-22257

[49] Jiang C, Liu H, Liu B, Zhong Z, Zou J, Wang J, Wang L, Peng J, Cao Y. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31: 82-89

[50] Rogach A L, Gaponik N, Lupton J M, Bertoni C, Gallardo D E, Dunn S, Pira N L, Paderi M, Repetto P, Romanov S G, O’Dwyer C, Torres C M S, Eychmuller A. Light-emitting diodes with semiconductor nanocrystals. Angewandte Chemie International Edition, 2008, 47(35): 6538-6549

[51] Mueller A H, Petruska M A, Achermann M, Werder D J, Akhadov E A, Koleske D D, Hoffbauer M A, Klimov V I. Multicolor lightemitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Letters, 2005, 5(6): 1039- 1044

[52] Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Gr tzel M, Sargent E H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 2010, 4(6): 3374-3380

[53] Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent E H. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099): 180-183

[54] Koh W K, Saudari S R, Fafarman A T, Kagan C R, Murray C B. Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Letters, 2011, 11(11): 4764-4767

[55] Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R, Lin W, Peng X. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. Journal of the American Chemical Society, 2012, 134(48): 19685- 19693

[56] Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W, Peng X. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. Journal of the American Chemical Society, 2014, 136(1): 179-187

[57] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687-692

[58] Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(14): 2311-2316

[59] Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Pe a F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18): 3528-3534

[60] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R,Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solutionprocessed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699-704

[61] Lim J, Park M, Bae W K, Lee D, Lee S, Lee C, Char K. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano, 2013, 7(10): 9019-9026

[62] Tessier M D, Dupont D, De Nolf K D, Roo J D, Hens Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chemistry of Materials, 2015, 27(13): 4893-4898

[63] Kim J H, Yang H. High-efficiency Cu-In-S quantum-dot-lightemitting device exceeding 7%. Chemistry of Materials, 2016, 28 (17): 6329-6335

[64] Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H. Hydroxyl-terminated CuInS2 based quantum dots: toward efficient and bright light emitting diodes. Chemistry of Materials, 2016, 28 (4): 1085-1091

[65] Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS: Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197-10202

[66] Shen H, Wang H, Li X, Niu J Z, Wang H, Chen X, Li L S. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton Transactions (Cambridge, England), 2009, (47): 10534-10540

[67] Jurbergs D, Rogojina E, Mangolini L, Kortshagen U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters, 2006, 88(23): 233116

[68] Cheng K Y, Anthony R, Kortshagen U R, Holmes R J. Highefficiency silicon nanocrystal light-emitting devices. Nano Letters, 2011, 11(5): 1952-1956

[69] Zhang X, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y, Wang P, Zhang T, Zhao Y, Zhang H, Cui T,Wang Y, Zhao J, YuW W, Rogach A L. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano, 2013, 7(12): 11234-11241

[70] Yuan F, Wang Z, Li X, Li Y, Tan Z, Fan L, Yang S. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Advanced Materials, 2017, 29 (3): 1604436

[71] Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot lightemitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162-7167

[72] Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, B hm ML. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941-2944

[73] Yang B, Chen J, Hong F, Mao X, Zheng K, Yang S, Li Y, Pullerits T, Deng W, Han K. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angewandte Chemie International Edition, 2017, 56(41): 12471-12475

[74] Chen Q, De Marco N, Yang Y M, Song T B, Chen C C, Zhao H, Hong Z, Zhou H, Yang Y. Under the spotlight: the organic- inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355-396

[75] Cortecchia D, Dewi H A, Yin J, Bruno A, Chen S, Baikie T, Boix P P, Gr tzel M, Mhaisalkar S, Soci C, Mathews N. Lead-free MA2CuClxBr4 - x hybrid perovskites. Inorganic Chemistry, 2016, 55(3): 1044-1052

[76] Lee K H, Lee J H, Kang H D, Park B, Kwon Y, Ko H, Lee C, Lee J, Yang H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano, 2014, 8(5): 4893-4901

[77] Anikeeva P O, Halpert J E, Bawendi M G, Bulovi V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters, 2007, 7(8): 2196-2200

[78] Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C, Lee S. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Advanced Materials, 2014, 26(37): 6387- 6393

[79] Dai X, Deng Y, Peng X, Jin Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Advanced Materials, 2017, 29(14): 1607022

[80] Li J, Xu L,Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885

[81] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96-99

[82] Manders J R, Qian L, Titov A, Hyvonen J, Tokarz-Scott J, Acharya K P, Yang Y, Cao W, Zheng Y, Xue J, Holloway P H. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. Journal of the Society for Information Display, 2015, 23(11): 523-528

[83] Shen H, Cao W, Shewmon N T, Yang C, Li L S, Xue J. Highefficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Letters, 2015, 15(2): 1211-1216

[84] Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H, Qian L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9(4): 259-266

[85] Gao M, Li L, Song Y. Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(12): 2971-2993

[86] Liu X, Tarn T J, Huang F, Fan J. Recent advances in inkjet printing synthesis of functional metal oxides. Particuology, 2015, 19: 1-13

[87] Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir, 2009, 25(5): 2629-2635

[88] Liu H M, Zheng H, Xu W, Peng J B. Technology and development of ink-jet printing electroluminescence displays. Materials China, 2014, 33(3): 163-171

[89] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827-829

[90] Yunker P J, Still T, Lohr M A, Yodh A G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011, 476(7360): 308-311

[91] Soltman D, Subramanian V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir, 2008, 24 (5): 2224-2231

[92] Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions. Journal of Physical Chemistry B, 2006, 110(14): 7090-7094

[93] Kim D, Jeong S, Park B K, Moon J. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Applied Physics Letters, 2006, 89(26): 264101

[94] Still T, Yunker P J, Yodh A G. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 2012, 28(11): 4984-4988

[95] Jiang C, Zhong Z, Liu B, He Z, Zou J, Wang L, Wang J, Peng J, Cao Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Applied Materials & Interfaces, 2016, 8(39): 26162-26168

[96] Cui Z. Printed Electronics: Materials, Technologies and Applications. Beijing: Higher Education Press, 2012 (in Chinese)

[97] Shin P, Sung J. The effect of driving waveforms on droplet formation in a piezoelectric inkjet nozzle. In: Proceedings of Electronics Packaging Technology Conference, Singapore. IEEE, 2009, 158-162

[98] Kwon K S, Kim W. A waveform design method for high-speed inkjet printing based on self-sensing measurement. Sensors and Actuators. A, Physical, 2007, 140(1): 75-83

[99] hin P, Sung J, Lee M H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectronics and Reliability, 2011, 51(4): 797- 804

[100] Kwon K S. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-ondemand drop formation curve and the instantaneous jetting speed curve. Journal of Micromechanics and Microengineering, 2010, 20 (11): 115005

[101] Kim C, Nogi M, Suganuma K, Yamato Y. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films. ACS Applied Materials & Interfaces, 2012, 4(4): 2168-2173

[102] Nguyen P Q M, Yeo L P, Lok B K, Lam Y C. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. ACS Applied Materials & Interfaces, 2014, 6(6): 4011-4016

[103] Mahajan A, Hyun W J, Walker S B, Rojas G A, Choi J H, Lewis J A, Francis L F, Frisbie C D. A self-aligned strategy for printed electronics: exploiting capillary flow on microstructured plastic surfaces. Advanced Electronic Materials, 2015, 1(9): 1500137

[104] Park K S, Baek J, Park Y, Lee L, Lee Y E, Kang Y, Sung M M. Inkjet-assisted nanotransfer printing for large-scale integrated nanopatterns of various single-crystal organic materials. Advanced Materials, 2016, 28(15): 2874-2880

[105] Wu S F, Li S H,Wang Y K, Huang C C, Sun Q, Liang J J, Liao L S, FungMK. White organic LED with a luminous efficacy exceeding 100 lm$W-1 without light out-coupling enhancement techniques. Advanced Functional Materials, 2017, 27(31): 1701314

[106] Chiba T, Pu Y J, Kido J. Solution-processed white phosphorescent tandem organic light-emitting devices. Advanced Materials, 2015, 27(32): 4681-4687

[107] Vaart N C V D, Lifka H, Budzelaar F P M, Rubingh J E J M, Hoppenbrouwers J J L, Dijksman J F, Verbeek R G F A, Woudenberg R, Vossen F J, Hiddink M G H, Rosink J J W M, Bernards T N M, Giraldo A. 44.4: distinguished paper: towards large-area full-color active-matrix printed polymer OLED television. Sid Symposium Digest of Technical Papers, 2004, 35(1): 1284-1287

[108] Hebner T R, Wu C C, Marcy D, Lu M H, Sturm J C. Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters, 1998, 72(5): 519-521

[109] Kobayashi H, Kanbe S, Seki S, Kigchi H, Kimura M, Yudasaka I, Miyashita S, Shimoda T, Towns C R, Burroughes J H, Friend R H. A novel RGB multicolor light-emitting polymer display. Synthetic Metals, 2000, 111-112: 125-128

[110] Duineveld P C, de Kok M M, Buechel M, Sempel A, Mutsaers K A H, van de Weijer P, Camps I G J, van de Biggelaar T, Rubingh J E J M, Haskal E I. Ink-jet printing of polymer light-emitting devices. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4464: 59-67

[111] Fleuster M, Klein M, Roosmalen P, Wit A, Schwab H. 44.2: Mass manufacturing of full color passive-matrix and active-matrix PLED displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1276-1279

[112] Gupta R, Ingle A, Natarajan S, So F. 44.3: Ink jet printed organic displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1281-1283

[113] Rhee J, Wang J, Cha S, Chung J, Lee D, Hong S, Choi B, Goh J, Jung K, Kim S, Ko C, Koh B, Sung S, Park K, Kim N, Chung K, Gregory H, Bale M, Creighton C, Wild B, Shawcross A, Webb L, Hatcher M, Lees R, Richardson M, Bassett O, Coats S, Jongman J, Goddard S, Lyon P, Murphy C, Wallace P, Carte J, Athanassopoulou N. P-177: a 14.1-in. full-color polymer-LED display with a- Si TFT backplane by ink-jet printing. SID Symposium Digest of Technical Papers, 2006, 37(1): 895-897

[114] Gohda T, Kobayashi Y, Okano K, Inoue S, Okamoto K, Hashimoto S, Yamamoto E, Morita H, Mitsui S, Koden M. 58.3: a 3.6-in. 202-ppi full-color AMPLED display fabricated by ink-jet method. SID Symposium Digest of Technical Papers, 2006, 37(1): 1767-1770

[115] Takei S, Kitabayashi A, Hanaoka H, Shinohara K, Goto M, Nozawa T, Kubota T, Kasai T, Sakai S, Miyashita S. P-186L: latenews poster: fabrication of completely uniform OLED display using an improved inkjet method. SID Symposium Digest of Technical Papers, 2009, 40(1): 1351-1354

[116] Zheng H, Zheng Y, Liu N, Ai N,Wang Q,Wu S, Zhou J, Hu D, Yu S, Han S, Xu W, Luo C, Meng Y, Jiang Z, Chen Y, Li D, Huang F, Wang J, Peng J, Cao Y. All-solution processed polymer lightemitting diode displays. Nature Communications, 2013, 4(3): 1971

[117] Chen C, Chung Y, Chen C, Chen P Y, Lee C H, Cheng L I, Tsai L, Ting H C, Lin L F, Chen C C, Shih T H, Chen C Y, Chang L H, Lin Y. 55.2: ink-jet printed AMOLED displays based on high mobility IGZO TFTs: cost does matter! Sid Symposium Digest of Technical Papers, 2014, 44(1):760-762

[118] Chen P Y, Chen C L, Chen C C, Tsai L, Ting H C, Lin L F, Chen C C, Chen C Y, Chang L H, Shih T H, Chen Y H, Huang J C, Lai M Y, Hsu C M, Lin Y. 30.1: invited paper: 65-inch inkjet printed organic light-emitting display panel with high degree of pixel uniformity. SID Symposium Digest of Technical Papers, 2014, 45 (1): 396-398

[119] JOLED Inc.世界初の印刷方式4K有機ELパネル、サンプル出 荷を開始!http://www.j-oled.com/news/press/finetec2017/ (2017/ 5/17)

[120] Olivier S, Derue L, Geffroy B, Ishow E, Maindron T. Inkjet printing of photopolymerizable small molecules for OLED applications. In: Proceedings of Organic Light Emitting Materials and Devices XIX. International Society for Optics and Photonics, 2015, 9566: 95661N

[121] Haverinen H M, Myllyl R A, Jabbour G E. Inkjet printed RGB quantum dot-hybrid LED. Journal of Display Technology, 2010, 6 (3): 87-89

[122] Kim T H, Cho K S, Lee E K, Lee S J, Chae J, Kim J W, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176-182

[123] Kim B H, OnsesMS, Lim J B, Nam S, Oh N, Kim H, Yu K J, Lee J W, Kim J H, Kang S K, Lee C H, Lee J, Shin J H, Kim N H, Leal C, Shim M, Rogers J A. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, 2015, 15(2): 969-973

[124] Han J, Ko D, Park M, Roh J, Jung H, Lee Y, Kwon Y, Sohn J, Bae W K, Chin B D, Lee C. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays. Journal of the Society for Information Display, 2016, 24(9): 545- 551

[125] Liu Y, Li F, Xie X, Chen W, Xu Z, Zheng C, Hu H, Guo T. P-122: red and green quantum dots light-emitting diodes fabricated by inkjet printing. Sid Symposium Digest of Technical Papers, 2017, 48(1): 1715-1718

[126] Jiang C, Mu L, Zou J, He Z, Zhong Z, Wang LMiao, Xu, Wang J, Peng J, Cao Y.Full-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, https://doi.org/10.1007/s11426-017-9087-y

[127] Xia S, Cheon K O, Brooks J J, Rothman M, Ngo T, Hett P, Kwong R C, Inbasekaran M, Brown J J, Sonoyama T, Ito M, Seki S, Miyashita S. Printable phosphorescent organic light-emitting devices. Journal of the Society for Information Display, 2009, 17 (2): 167-172

[128] Chen P, Chen C, Hsieh C, Lin J M, Lin Y S, Lin Y. P-56: High resolution organic light-emitting diode panel fabricated by ink jet printing process. Sid Symposium Digest of Technical Papers, 2015, 46(1):1352-1354

[129] Sax S, Rugen-Penkalla N, Neuhold A, Schuh S, Zojer E, List E J W, Müllen K. Efficient blue-light-emitting polymer heterostructure devices: the fabrication of multilayer structures from orthogonal solvents. Advanced Materials, 2010, 22(18): 2087-2091

[130] Patel D G D, Graham K R, Reynolds J R. A Diels-Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. Journal of Materials Chemistry, 2012, 22(7): 3004- 3014

[131] Kim J S, Ho P K H, Murphy C E, Friend R H. Phase separation in polyfluorene-based conjugated polymer blends: lateral and vertical analysis of blend spin-cast thin films. Macromolecules, 2004, 37 (8): 2861-2871

[132] Xia Y, Friend R H. Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules, 2005, 38(15): 6466- 6471

[133] Chang S C, Liu J, Bharathan J, Yang Y, Onohara H, Kido J. Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Advanced Materials, 1999, 11(9): 734-737

[134] Gorter H, Coenen M J J, Slaats M W L, Ren M, Lu W, Kuijpers C J, Groen W A. Toward inkjet printing of small molecule organic light emitting diodes. Thin Solid Films, 2013, 532: 11-15

[135] Ding Z, Xing R, Fu Q, Ma D, Han Y. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Organic Electronics, 2011, 12(4): 703-709

[136] Coe S, Woo W K, Bawendi M, Bulovi V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800-803

[137] Kim H H, Park S, Yi Y , Son D I, Park C, Hwang D K, Choi W K. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. Scientific Reports, 2015, 5: 8968

[138] Kim O S, Kang B H, Lee J S, Lee S W, Cha S H, Lee J W, Kim S W, Kim S H, Kang S W. Efficient quantum dots light-emitting devices using polyvinyl pyrrolidone-capped ZnO nanoparticles with enhanced charge transport. IEEE Electron Device Letters, 2016, 37(8): 1022-1024

[139] Liang F, Liu Y, Hu Y, Shi Y L, Liu Y Q, Wang Z K, Wang X D, Sun B Q, Liao L S. Polymer as an additive in the emitting layer for high-performance quantum dot light-emitting diodes. ACS Applied Materials & Interfaces, 2017, 9(23): 20239-20246

[140] Kim L, Anikeeva P O, Coe-Sullivan S A, Steckel J S, Bawendi M G, Bulovi V. Contact printing of quantum dot light-emitting devices. Nano Letters, 2008, 8(12): 4513-4517

[141] Kim B H, Nam S, Oh N, Cho S Y, Yu K J, Lee C H, Zhang J, Deshpande K, Trefonas P, Kim J H, Lee J, Shin J H, Yu Y, Lim J B, Won S M, Cho Y K, Kim N H, Seo K J, Lee H, Kim T I, Shim M, Rogers J A. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano, 2016, 10(5): 4920- 4925

[142] Choi M K, Yang J, Kang K, Kim D C, Choi C, Park C, Kim S J, Chae S I, Kim T H, Kim J H, Hyeon T, Kim D H. Wearable redgreen- blue quantum dot light-emitting diode array using highresolution intaglio transfer printing. Nature Communications, 2015, 6: 7149

[143] Roy D, Munz M, Colombi P, Bhattacharyya S, Salvetat J P, Cumpson P J, SaboungiML. Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography. Applied Surface Science, 2007, 254(5): 1394-1398

[144] Gokarna A, Lee S K, Hwang J S, Cho Y H, Lim Y T, Chung B H, Lee M. Fabrication of CdSe/ZnS quantum-dot-conjugated protein microarrays and nanoarrays. Journal of the Korean Physical Society, 2008, 53(925): 3047-3050

[145] Park J S, Kyhm J, Kim H H, Jeong S, Kang J, Lee S E, Lee K T, Park K, Barange N, Han J, Song J D, Choi W K, Han I K. Alternative patterning process for realization of large-area, fullcolor, active quantum dot display. Nano Letters, 2016, 16(11): 6946-6953

[146] Haverinen H M, Myllyl R A, Jabbour G E. Inkjet printing of light emitting quantum dots. Applied Physics Letters, 2009, 94(7): 073108

Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Frontiers of Optoelectronics, 2017, 10(4): 329. Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Frontiers of Optoelectronics, 2017, 10(4): 329.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!