强激光与粒子束, 2016, 28 (3): 033029, 网络出版: 2016-03-28  

10~45 GHz宽频段同轴输入窗设计

Design of 10-45 GHz wide-band coaxial input window
作者单位
电子科技大学 物理电子学院, 成都 610054
摘要
为满足微波管放大器对宽频段输入窗的需求,并保证馈源的真空密封需求,提出并设计了一种适用于宽频段微波放大器的同轴输入窗。该宽频段同轴输入窗采用渐变圆环形陶瓷,材料介电常数为9.3,窗片厚度为2.5 mm,内径为2.14 mm,外径为5 mm,渐变段长度为6.5 mm。利用三维高频电磁仿真软件CST对其建模分析,并对同轴内外结构尺寸和陶瓷渐变结构进行优化仿真,得出该宽频带同轴输入窗能够在10~45 GHz频带内实现插入损耗小于0.5 dB。
Abstract
In order to satisfy the demand of microwave amplifier tube for wide-band input window, a coaxial input window suitable for wide-band microwave device is designed. The material of the coaxial input window is tapered circular ceramic, whose permittivity is 9.3. The structure and size of coaxial and tapered ceramic are simulated by three-dimensional simulation software. Simulation results show that this coaxial input window can work in 10-45 GHz range with a less than 0.5 dB insertion loss.
参考文献

[1] Staprans A. High-power linear-beam tubes[J]. Proceedings of the IEEE, 1973, 61(3): 299-330.

[2] Bosman H L, Lau Y Y, Gilgenbach R M. Power absorption by thin films on microwave windows[J]. IEEE Trans Plasma Sci, 2004, 32(3): 1292-1297.

[3] Churchill D B. Waveguide windows for high-power microwave tubes[J]. Proceedings of the IEEE, 1963, 51(3): 531.

[4] Jr Gilmour A S. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Norwood: Artech House Publisher, 2011.

[5] Smith M J, Phillips G. Power klystrons today[M]. Baldock: Research Studies Press, 1995.

[6] Churchill D. Investigation of microwave window failure mechanisms and their elimination[R]. NA-8240-8182-1, 1960.

[7] Johnson F O. Computer synthesis of filter networks as applied to waveguide windows[C]//Proc International Conference on Microwave Circuit Theory and Information Theory. 1964.

[8] Goldfinger A. High-power RF window study[R]. RADC-TR-66-657, 1967.

[9] 王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009. (Wang Wenxiang. Microwave engineering technology. Beijing: National Defense Industry Press, 2009)

[10] 电子管设计手册编辑委员会. 大功率速调管设计手册[M]. 北京: 国防工业出版社, 1979. (Editorial Committee of Design Handbook of Electron Tube. Design handbook of high power klystron. Beijing: National Defense Industry Press, 1979)

[11] 陈辉, 王丽, 徐勇, 等. Q波段回旋行波管宽带高平均功率输出窗设计与热分析[J]. 强激光与粒子束, 2014, 26: 123005. (Chen Hui, Wang Li, Xu Yong, et al. Design and thermal analysis of broad bandwidth and high average power output window for Q-band gyro-TWT. High Power Laser and Particle Beams, 2014, 26: 123005)

[12] 陈辉, 王丽, 罗勇, 等. Q波段回旋行波管新型盒型输出窗的设计[J]. 强激光与粒子束, 2015, 27: 013002. (Chen Hui, Wang Li, Luo Yong, et al. Design of pill-box output window for high power Q-band gyrotron traveling wave tube. High Power Laser and Particle Beams, 2015, 27: 013002)

[13] 李艳华, 丁耀根. 速调管矩形波导窗的研究[J]. 强激光与粒子束, 2006, 18(12): 2061-2064. (Li Yanhua, Ding Yaogen. Rectangle wave-guide output window of klystron. High Power Laser and Particle Beams, 2006, 18(12): 2061-2064)

[14] Chaudhary S V, Kulkarni S V, Upadhyaya T, et al. Design of high power RF coaxial vacuum window[C]//Nirma University International Conference on Engineering. 2013.

[15] Dharmendra R, Kishore M, Siju G, et al. A simple coaxial ceramic based vacuum window for vacuum transmission line of ICRF system[C]//Proc AIP Conf. 2011.

[16] 张巨先. 低介电损耗微晶氧化铝陶瓷研究[J]. 真空科学与技术学报, 2006, 26(1): 77-79. (Zhang Juxian. Development of low loss tangent Al2O3 ceramics with fine-grain. Chinese Journal of Vacuum Science and Technology, 2006, 26(1): 77-79)

谢杰, 袁学松, 蒙林, 杨同斌, 陈青云, 李禧强, 鄢扬. 10~45 GHz宽频段同轴输入窗设计[J]. 强激光与粒子束, 2016, 28(3): 033029. Xie Jie, Yuan Xuesong, Meng lin, Yang Tongbin, Chen Qingyun, Li Xiqiang, Yan Yang. Design of 10-45 GHz wide-band coaxial input window[J]. High Power Laser and Particle Beams, 2016, 28(3): 033029.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!