Journal of Innovative Optical Health Sciences, 2020, 13 (6): 2050021, Published Online: Dec. 25, 2020  

Highly-efficient quantitative fluorescence resonance energy transfer measurements based on deep learning

Author Affiliations
1 Department of Biomedical Engineering, School of Medicine Tsinghua University, Beijing, 100084, China
2 Beijing Advanced Information & Industrial Technology Research Institute Beijing Information Science & Technology University Beijing, 100192, China
Abstract
Intensity-based quantitative fluorescence resonance energy transfer (FRET) is a technique to measure the distance of molecules in scale of a few nanometers which is far beyond optical diffraction limit. This widely used technique needs complicated experimental process and manual image analyses to obtain precise results, which take a long time and restrict the application of quantitative FRET especially in living cells. In this paper, a simplified and automatic quantitative FRET (saqFRET) method with high efficiency is presented. In saqFRET, photoactivatable acceptor PA-mCherry and optimized excitation wavelength of donor enhanced green fluorescent protein (EGFP) are used to simplify FRET crosstalk elimination. Traditional manual image analyses are time consuming when the dataset is large. The proposed automatic image analyses based on deep learning can analyze 100 samples within 30 s and demonstrate the same precision as manual image analyses.
References

[1] L. Stryer, R. P. Haugland, "Energy transfer: A spectroscopic ruler," Proc. Natl. Acad. Sci. U.S.A 58(2), 719 (1967).

[2] T. Foster, "Intermolecular energy migration and fluorescence," Ann. Phys. 2(13), 55 (1948).

[3] A. Miyawaki, "Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer," Ann. Rev. Biochem. 80, 357–373 (2011).

[4] D. Cheng, Y. Pan, L. Wang, Z. Zeng, L. Yuan, X. Zhang, Y.-T. Chang, "Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe," J. Am. Chem. Soc. 139(1), 285–292 (2017).

[5] F. Humpert, I. Yahiatene, M. Lummer, M. Sauer, T. Huser, "Quantifying molecular colocalization in live cell fluorescence microscopy," J. Biophotonics 8(1–2), 124–132 (2015).

[6] L. Chai, J. Zhang, L. Zhang, T.-S. Chen, "Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells," J.Biomed. Opt. 20(3), 037008 (2015).

[7] A. Zeug, A. Woehler, E. Neher, E. G. Ponimaskin, "Quantitative intensity-based FRET approaches — a comparative snapshot," Biophys. J. 103(9), 1821– 1827 (2012).

[8] L. Wei, J. Zhang, Z. Mai, F. Yang, M. Du, F. Lin, J. Qu, T. Chen, "Quantitative dual-channel FRET microscopy," Opt. Exp. 25(21), 26089–26102 (2017).

[9] H. Li, H. Yu, T. Chen, "Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks," Microsc. Microanal. 18(5), 1021–1029 (2012).

[10] M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, D. T. Yue, "Preassociation of calmodulin with voltage-gated Ca2t channels revealed by FRET in single living cells," Neuron 31(6), 973–985 (2001).

[11] M. G. Erickson, H. Liang, M. X. Mori, D. T. Yue, "FRET two-hybrid mapping reveals function and location of L-type Ca2t channel CaM preassociation," Neuron 39(1), 97–107 (2003).

[12] M. R. Tadross, S. A. Park, B. Veeramani, D. T. Yue, "Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy," J. Microsc. 233(1), 192–204 (2009).

[13] Z. Xia, Y. Liu, "Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes," Biophys. J. 81(4), 2395–2402 (2001).

[14] G. W. Gordon, G. Berry, X. H. Liang, B. Levine, B. Herman, "Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy," Biophys. J. 74(5), 2702–2713 (1998).

[15] M. Ben-Johny, D. N. Yue, D. T. Yue, "Detecting stoichiometry of macromolecular complexes in live cells using FRET," Nature Commun. 7(1), 1–10 (2016).

[16] L. Ma, F. Yang, J. Zheng, "Application of fluorescence resonance energy transfer in protein studies," J. Mol. Struct. 1077, 87–100 (2014).

[17] A. A. Jazi, E. Ploetz,M. Arizki, B. Dhandayuthapani, I. Waclawska, R. Kr?mer, C. Ziegler, T. Cordes, "Caging and photoactivation in single-molecule F€orster resonance energy transfer experiments," Biochem. 56(14), 2031–2041 (2017).

[18] S. Peng, R. Sun, W. Wang, C. Chen, "Singlemolecule photoactivation FRET: a general and easy-to-implement approach to break the concentration barrier," Angew. Chem. 129(24), 6986–6989 (2017).

[19] F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-Schwartz, V. V. Verkhusha, "Photoactivatable mCherry for high-resolution twocolor fluorescence microscopy," Nature Meth. 6(2), 153 (2009).

[20] A. D. Elder, A. Domin, G. S. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, C. F. Kaminski, "A quantitative protocol for dynamic measurements of protein interactions by F€orster resonance energy transfer-sensitized fluorescence emission," J. R. Soc. Interface 6(suppl 1), S59–S81 (2009).

[21] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, D. Van Valen, "Deep learning for cellular image analysis," Nature Meth. 16(12), 1233–1246 (2019).

[22] S. Tripathi, K. Kumar, B. K. Singh, R. P. Singh, "Image segmentation: A review," Int. J. Comput. Sci. Manage. Res. 1(4), 838–843 (2012).

[23] S. Healy, J. McMahon, P. Owens, P. Dockery, U. FitzGerald, "Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI," J. Neurosci. Meth. 295, 87–103 (2018).

[24] V. Wiesmann, M. Bergler, R. Palmisano, M. Prinzen, D. Franz, T. Wittenberg, "Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms," BMC Bioinf. 18(1), 176 (2017).

[25] A. Korzyńska, M. Iwanowski, "Multistage morphological segmentation of bright-field and fluorescent microscopy images," Opto-Electron. Rev. 20(2), 174–186 (2012).

[26] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, J. Liang, "Convolutional neural networks for medical image analysis: Full training or fine tuning?," IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016).

[27] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. De Vries, M. J. N. L. Benders, I. I?gum, "Automatic segmentation of MR brain images with a convolutional neural network," IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016).

[28] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, S. Mougiakakou, "Lung pattern classi- fication for interstitial lung diseases using a deep convolutional neural network," IEEE Trans. Med. Imaging 35(5), 1207–1216 (2016).

[29] J. Shin, N. Tajbakhsh, R. Todd Hurst, C. B. Kendall, J. Liang, "Automating carotid intimamedia thickness video interpretation with convolutional neural networks," 2016 IEEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2526–2535 (IEEE, 2016).

[30] C. Cai, K. Deng, C. Ma, J. Luo, "End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging," Opt. Lett. 43(12), 2752– 2755 (2018).

[31] A. S. Aydin, A. Dubey, D. Dovrat, A. Aharoni, R. Shilkrot, "CNN based yeast cell segmentation in multi-modal fluorescent microscopy data," 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 753–759 (IEEE, 2017).

[32] K. Sirinukunwattana, S. E. A. Raza, Y.-W. Tsang, D. R. J. Snead, I. A. Cree, N. M. Rajpoot, "Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images," IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016).

[33] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, pp. 234–241, Springer (2015).

[34] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.

[35] D. Hu, Z. Sheng, M. Zhu, X. Wang, F. Yan, C. Liu, L. Song, M. Qian, X. Liu, H. Zheng, "F€orster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for In Situ Visualization of Cancer Photothermal Therapy," Theranostics 8(2), 410 (2018).

[36] M. C. Kopp, P. R. Nowak, N. Larburu, C. J. Adams, M. M. U. Ali, "In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress," Elife 7, e30257 (2018).

[37] A. K. Kenworthy, "Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy," Methods 24(3), 289–296 (2001).

[38] W. Guo, Y. Wei, Z. Dai, G. Chen, Y. Chu, Y. Zhao, "Nanostructure and corresponding quenching efficiency of fluorescent DNA probes," Materials 11(2), 272 (2018).

[39] A. K. Kenworthy, M. Edidin, "Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of < 100A using imaging fluorescence resonance energy transfer," J. Cell Biol. 142(1), 69–84 (1998).

[40] T. Zal, N. R. J. Gascoigne, "Photobleachingcorrected FRET efficiency imaging of live cells," Biophys. J. 86(6), 3923–3939 (2004).

Lin Ge, Fei Liu, Jianwen Luo. Highly-efficient quantitative fluorescence resonance energy transfer measurements based on deep learning[J]. Journal of Innovative Optical Health Sciences, 2020, 13(6): 2050021.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!