大气与环境光学学报, 2018, 13 (1): 1, 网络出版: 2018-01-30  

大气碘化学与含碘气溶胶形成机制的研究进展

Rresearch Process on Atmospheric Chemistry of Iodine and Formation of Iodine Oxide Particles
作者单位
1 安徽大学物理与材料科学学院,安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所大气物理化学研究室,安徽 合肥 230031
3 中国科学技术大学研究生院,安徽 合肥 230026
4 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
5 南昌大学资源环境与化工学院鄱阳湖环境与资源利用教育部重点实验室,江西 南昌 330031
摘要
含碘气溶胶对全球气候与环境变化有着深远的影响。已有的研究表明含碘气溶胶的形成和生长源于含碘前体物(碘及碘化物)的 氧化和后续聚合过程,含碘前体物的初步氧化会形成IO、OIO等具有高度反应活性的初级碘氧化物,进一步的氧化反应产生更 稳定的碘氧化物IxOy,再经过后续聚合反应形成碘氧粒子(iodine oxide particles, IOPs)。IOPs的形成机制决定了 含碘气溶胶的物化特性,最终决定了环境与气候效应。然而,现有的模型研究与大气观测结果之间,甚至是不同模型研究之间, 常常存在分歧,这些分歧又进而导致人们在评估含碘气溶胶对全球环境和气候变化影响效应上的不确定性。详细介绍了 近年来大气碘化学与含碘气溶胶形成机制的研究进展,并指出了亟待解决的问题和面临的挑战。
Abstract
Photolysis of iodine and iodine compound in the presence of O3 has been proposed as a mechanism leading to intense iodine oxide particles(IOPs) formation, which has a profound influence on global climate change and atmospheric environment. It is believed that the formation of IOPs is involved with the production and oxidation of a series of iodine oxides (IxOy). However, the details of IOPs formation are not yet resolved, and there are still important gaps between modeling and field research, or even between different modeling work, which hinders precise evaluation of IOPs’ impaction atmospheric processes, climate and human health. The main progress research on the formation of iodine oxide particles has been described and the major challenges have been discussed.
参考文献

[1] Kocher D C. A dynamic model of the global iodine cycle and estimation of dose to the world population from releases of iodine-129 to the environment[J].Environ. Int., 1981, 5(1): 15-31.

[2] Whitehead D C. The distribution and transformations of iodine in the environment[J].Environ. Int., 1984, 10(4): 321-339.

[3] 党爱翠, 龙爱民, 陈绍勇. 海洋生态系统中碘的分布及形态转化[J]. 海洋湖沼通报, 2012, 12(4): 146-154.

    Dang Aicui, Long Aimin, Chen Shaoyong. Distribution and morphology transformation of the iodine in the marine ecosystems[J].Transactions of Oceanology and Limnology, 2012, 12(4): 146-154(in Chinese).

[4] 徐思琦, 李 冰. 大气气溶胶中碘形态研究进展[J]. 环境科学学报, 2010, 31(5): 1121-1129.

    Xu Siqi, Li Bing. Process of research of the atmospheric aerosol from the iodine oxide[J].Acta Scientiae Circumstantiae, 2010, 31(5): 1121-1129(in Chinese).

[5] Vogt R, Sander R, Glasow R V,et al. Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study[J]. J. Atmos. Chem., 1999, 32(3): 375-395.

[6] Chameides W L, Davis D D. Iodine: its possible role in tropospheric photochemistry[J].J. Geophy. Res.: Oceans, 1981, 85(NC12): 7383-7398.

[7] McFiggans G, Plane J M C, Allan B J,et al. A modeling study of iodine chemistry in the marine boundary layer[J]. J. Geophy. Res.: Atmos., 2000, 105(D11): 14371-14385.

[8] Calvert J G, Lindberg S E. Potential influence of iodine-containing compounds on the chemistry of the troposphere in the polar spring. I. Ozone depletion[J].Atmos. Environ., 2004, 38(30): 5087-5104.

[9] Harwood M H, Burkholder J B, Hunter M,et al. Absorption cross sections and self-reaction kinetics of the IO radical[J]. J. Phys. Chem. A., 1997, 101(5): 853-863.

[10] Bloss W J, Lee J D, Johnson G P,et al. Impact of halogen monoxide chemistry upon boundary layer OH and HO2 concentrations at a coastal site[J]. Geophys. Res. Lett., 2005, 32(6): 293-306.

[11] Saiz-Lopez A, Plane J M C, Mahajan A S,et al. On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime[J]. Atmos. Chem. Phys., 2007, 8(4): 887-900.

[12] Alicke B, Kai H, Stutz J,et al. Iodine oxide in the marine boundary layer[J]. Nature, 1999, 397(397): 572-573.

[13] Saiz-Lopez A, PlaneJ M C, BakerA R,et al. Atmospheric chemistry of iodine[J]. Chem. Rev., 2012, 112(3): 1773-1804.

[14] Saunders R W, Plane J M C. Formation pathways and composition of iodine oxide ultra-fine particles[J].Environ. Chem., 2005, 2(4): 299-303.

[15] Saiz-Lopez A , Plane J M C. Novel iodine chemistry in the marine boundary layer[J].Geophys. Res. Lett., 2004, 31(4): L04112.

[16] Mcfiggans G, Coe H, Burgess R,et al. Direct evidence for coastal iodine particles from Laminaria macroalgae-linkage to emissions of molecular iodine[J]. Atmos. Chem. Phys., 2004, 4(1): 701-713.

[17] Saiz-Lopez A, Plane J M C, Mcfiggans G,et al. Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation[J]. Atmos. Chem. Phys., 2006, (4): 883-895.

[18] Palmer C J, Anders T L, Carpenter L J,et al. Iodine and halocarbon response of Laminariadigitata to oxidative stress and links to atmospheric new particle production[J]. Environ. Chem., 2005, 2(4): 282-290.

[19] Leigh R J, Ball S M, Whitehead J,et al. Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff[J]. Atmos. Chem. Phys. Disc., 2009, 10(23): 11823-11838.

[20] Jammoul A, Dumas S, D’Anna B,et al. Photoinduced oxidation of sea salt halides by aromatic ketones: a source of halogenated radicals[J]. Atmos. Chem. Phys., 2009, 9(13): 4229-4237.

[21] Martino M, Mills G P, Woeltjen J,et al. A new source of volatile organoiodine compounds in surface seawater[J]. Geophys. Res. Lett., 2009, 3(1): 329-342.

[22] Reeser D I, Jammoul A, Clifford D,et al. Photoenhanced reaction of ozone with chlorophyll at the seawater surface[J]. J. Phys. Chem. C., 2009, 113(6): 2071-2077.

[23] Jones C E, Carpenter L J. Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater[J]. Environ. Sci. Technol., 2005, 39(16): 6130-6137.

[24] Bell N, Hsu L, Jacob D J,et al. Methyl iodide: atmospheric budget and use as a tracer of marine convection in global models[J]. J. Geophy. Res.: Atmos., 2002, 107(D17): ACH 8-1-ACH 8-12.

[25] O’Dowd C D, Jimenez J L, Bahreini R,et al. Marine aerosol formation from biogenic iodine emissions[J]. Nature, 2002, 417(6889): 632-636.

[26] Glasow R V, Crutzen P J. Model study of multiphase DMS oxidation with a focus on halogens[J].Atmos. Chem. Phys., 2004, 4(3): 589-608.

[27] Baker A R, Tunnicliffe C, Jickells T D. Iodine speciation and deposition fluxes from the marine atmosphere[J].J. Geophy. Res.: Atmos., 2001, 10(D22): 28743-28749.

[28] Saunders R W, Plane J M C. Fractal growth modelling of I2O5 nanoparticles[J]. J. Aerosol Sci., 2006, 37(12): 1737-1749.

[29] Bale C S E, Ingham T, Commane R,et al. Novel measurements of atmospheric iodine species by resonance fluorescence[J]. J. Atmos. Chem., 2008, 60(1): 51-70.

[30] Martín J C G, Blahins J, Gross U,et al. In situ detection of atomic and molecular iodine using resonance and off-resonance fluorescence by lamp excitation: ROFLEX[J]. Atmos. Meas. Tech., 2011, 3(4): 29-45.

[31] Kürten A, Bergen A, Heinritzi M,et al. Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany[J]. Atmos. Chem. Phys., 2016, 1(19): 12793-12813.

[32] Sipil M, Sarnela N, Jokinen T,et al. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3[J]. Nature, 2016, 537(7621): 532.

[33] Saiz-Lopez A, Chance K, Liu X,et al. First observations of iodine oxide from space[J]. Geophys. Res. Lett., 2007, 34(12): L12812.

[34] Schonhardt A, Richter A, Wittrock F,et al. Observations of iodine monoxide (IO) columns from satellite[J]. Atmos. Chem. Phys., 2008, 8(3): 637-675.

[35] Kaltsoyannis N, Plane J M. Quantum chemical calculations on a selection of iodine-containingspecies (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere[J]. Phys. Chem. Chem., 2008, 10(13): 1723-1733.

[36] Plane J M, Joseph D M, Allan B J,et al. An experimental and theoretical study of the reactions OIO+NO and OIO+OH[J]. J. Phys. Chem. A., 2006, 110(1): 93-100.

[37] Dillon T J, Tucceri M E, Sander R,et al. LIF studies of iodine oxide chemistry. Part 3. Reactions IO+NO3→ OIO+NO2, I+NO3→ IO+NO2, and CH2I+O2→ (products): implications for the chemistry of the marine atmosphere at night[J]. Phys. Chem. Chem. Phys., 2008, 10(11): 1540-1554.

[38] Martín J C G, Ashworth S H, Mahajan A S,et al. Photochemistry of OIO: Laboratory study and atmospheric implications[J]. Geophys. Res. Lett., 2009, 3(9): 117-128.

[39] Gravestock T, Blitz M A, Heard D E. Kinetics study of the reaction of iodine monoxide radicals with dimethyl sulfide[J].Phys. Chem. Chem. Phys., 2005, 7(10): 2173-2181.

[40] Saizlopez A, Shillito J A, Coe H,et al. Measurements and modelling of I2, IO, OIO, BrO and NO3 in the mid-latitude marine boundary layer[J]. Atmos. Chem. Phys., 2006, (6): 1513-1528.

[41] Saunders R W, Kumar R, Gómez Martín J C,et al. Studies of the formation and growth of aerosol from molecular iodine precursor[J]. Z. Phys. Chem., 2010, 224(7-8): 1095-1117.

[42] Kaiho T.Iodine Chemistry and Applications[M]. John Wiley & Sons, Inc., 2014.

[43] Sellegri K, Yoon Y J, Jennings S G,et al. Quantification of coastal new ultrafine particles formation from in situ and chamber measurements during the BIOFLUX campaign[J]. Environ. Chem., 2006, 2(4): 260-270.

[44] Pirjola L, O’Dowd C D, Yoon Y J,et al. Modelling iodine particle formation and growth from seaweed in a chamber[J]. Environ. Chem., 2005, 2(4): 271-281.

[45] Moore R M, Webb M, Tokarczyk R,et al. Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures[J]. J. Geophy. Res.: Atmos., 1996, 101(C9): 20899-20908.

[46] Moredapieiro A, Romaríshortas V, Bermejobarrera P. A review on iodine speciation for environmental, biological and nutrition fields[J].J. Anal. At. Spectrom., 2011, 2(26): 2107-2152.

[47] Bertine K K, Goldberg E D. Trace elements in clams, mussels, and shrimp[J].Oceanol. Limnol., 1972, 17(6): 877-884.

[48] Wu D, Du J, Deng H,et al. Estimation of atmospheric iodine emission from coal combustion[J]. Int. J. Environ. Sci. Technol., 2014, 11(2): 357-366.

[49] Butler J H, King D B, Lobert J M,et al. Oceanic distributions and emissions of short-lived halocarbons[J]. Global Biogeochem. Cy., 2007, 21(1): 125-141.

[50] Chen Y, Zhuang G S, Guo Z G,et al. Atmospheric desposition of nutrients and trace elements to the coastal oceans: a review[J]. Adv. Ear. Sci., 2010, 25(7): 682-690.

[51] Blake N J, Blake D R, Chen T Y,et al. Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B[J]. J. Geophy. Res.: Atmos., 1998, 102(D23): 28315-28331.

[52] Yokouchi Y, Nojiri Y, Barrie L A,et al. Atmospheric methyl iodide: High correlation with surface seawater temperature and its implications on the sea-to-air flux[J]. J. Geophy. Res.: Atmos., 2001, 10(D12): 12661-12668.

[53] Yokouchi Y, Osada K, Wada M,et al. Global distribution and seasonal concentration change of methyl iodide in the atmosphere[J]. J. Geophy. Res.: Atmos., 2008, 113(D18): 1044-1044.

[54] Archer S D, Goldson L E, Liddicoat M I,et al. Marked seasonality in the concentrations and sea-to-air flux of volatile iodocarbon compounds in the western English Channel[J]. J. Geophy. Res.: Oceans, 2007, 112(C8): 271-289.

[55] Cohan D S, Sturrock G A, Biazar A P,et al. Atmospheric methyl iodide at Cape Grim, Tasmania, from AGAGE observations[J]. J. Atmos. Chem., 2003, 44(2): 131-150.

[56] Sive B C, Varner R K, Mao H,et al. A large terrestrial source of methyl iodide[J]. Geophys. Res. Lett., 2007, 34(17): 251-270.

[57] Klick S. Seasonal variations of biogenic and anthropogenic halocarbons in seawater from a coastal site[J].Limnol. Oceanol., 1992, 37(7): 1579-1585.

[58] Jones C E, Hornsby K E, Sommariva R,et al. Quantifying the contribution of marine organic gases to atmospheric iodine[J]. Geophys. Res. Lett., 2010, 37(18): 109-118.

[59] Martino M, Liss P S, Plane J M. The photolysis of dihalomethanes in surface seawater[J].Environ. Sci. Technol., 2005, 39(18): 7097-7101.

[60] Jones C E, Carpenter L J. Chemical destruction of CH3I, C2H5I, 1-C3H7I, and 2-C3H7I in saltwater[J]. Geophys. Res. Lett., 2007, 34(13): 256-260.

[61] Küpper F C, Feitersm M C. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry[J].Proc. Natl. Acad. Sci. U.S.A., 2008, 105(19): 6954-6958.

[62] Garland J A, Elzerman A W, Penkett S A. The mechanism for dry deposition of ozone to seawater surfaces[J].J. Geophy. Res., 1980, 85(85): 7488-7492.

[63] Garland J A, Curtis H. Emission of iodine from the sea surface in the presence of ozone[J].J. Geophy. Res., 1981, 8(C4): 3183-3186.

[64] Klick S, Abrahamsson K. Biogenic volatile iodated hydrocarbons in the ocean[J].J. Geophy. Res.: Oceans, 1992, 971(C8): 12683-12687.

[65] Moore R M, Tokarczyk R. Volatile biogenic halocarbons in the northwest Atlantic[J].Global Biogeochem. Cy., 1993, 7(1): 195-210.

[66] Burkholder J B, Curtius J, Ravishankara A R,et al. Laboratory studies of the homogeneous nucleation of iodine oxides[J]. Atmos. Chem. Phys., 2004, 4(1): 19-43.

[67] Gómez Martín J C, Gálvez O, Baezaromero M T,et al. On the mechanism of iodine oxide particle formation[J]. Phys. Chem. Chem. Phys., 2013, 15(37): 15612-15622.

[68] Kumar R, Saunders RW, Mahajan AS,et al. Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3[J]. Atmos. Chem. Phys., 2010, 10(9): 12251-12260.

[69] Sander S P, Golden D M, Kurylo M J,et al. Chemical kinetics and photochemical data for use in: atmospheric studies, evaluation number 15[R]. Jet Propulsion Laboratory Publication, 2006.

[70] Atkinson R, Baulch D L, Cox R A,et al. Evaluated kinetic and photochemical data for atmospheric chemistry:Volume III-gas phase reactions of inorganic halogens[J]. Atmos. Chem. Phys., 2007, 7(4): 981-1191.

[71] Gómez Martín J C, Spietz P, Burrows J P. Kinetic and mechanistic studies of the I2/O3 photochemistry[J]. J. Phys. Chem. A., 2007, 111(2): 306-320.

[72] Mkel J M, Hoffmann T, Holzke C,et al. Biogenic iodine emissions and identification of end products in coastal ultrafine particles during nucleation bursts[J]. J. Geophy. Res.: Atmos., 2002, 107(D19): PAR 14-1-PAR 14-14.

[73] Cotter E S N, Booth N J, Canosamas C E,et al. Reactions of Cl atoms with CH3I, C2H5I, 1-C3H7I, 2-C3H7I and CF3I: kinetics and atmospheric relevance[J]. Phys. Chem. Chem. Phys., 2001, 3(3): 402-408.

[74] Enami S, Sakamoto Y, Yamanaka T,et al. Reaction Mechanisms of IO Radical Formation from the Reaction of CH3I with Cl Atom in the Presence of O2[J]. Bull. Chem. Soc. Jpn., 2008, 81(10): 1250-1257.

[75] Cotter E S N, Canosa-Mas C E, Manners C R,et al. Kinetic study of the reactions of OH with the simple alkyl iodides: CH3I, C2H5I, 1-C3H7I and 2-C3H7I[J]. Atmos. Environ., 2003, 37(8): 1125-1133.

[76] Carl S A, Crowley J N. 298 K rate coefficients for the reaction of OH with i-C3H7I, n-C3H7I and C3H8[J]. Atmos. Chem. Phys. Disc., 2001, 1(1): 1-7.

[77] Nakano Y, Ukeguchi H, Ishiwata T. Rate constant of the reaction of NO3, with CH2I2, measured with use of cavity ring-down spectroscopy[J]. Chem. Phys., 2006, 430(4-6): 235-239.

[78] Enami S, Hashimoto S, Kawasaki M,et al. Observation of adducts in the reaction of Cl atoms with XCH2I (X=H, CH3, Cl, Br, I) using cavity ring-down spectroscopy[J]. J. Phys. Chem. A., 2005, 109(8): 1587-1593.

[79] Enami S, Yamanaka T, Hashimoto S,et al. Direct observation of adduct formation of alkyl and aromatic iodides with Cl atoms using cavity ring-down spectroscopy[J]. J. Phys. Chem. A., 2005, 109(27): 6066-6070.

[80] Gravestock T J, Blitz M A, Bloss W J,et al. A multidimensional study of the reaction CH2I+O2: products and atmospheric implications[J]. Chem. Phys. Chem., 2010, 11(18): 3928-3941.

[81] Dookwah-Roberts V, Nicovich JM, Wine PH. Spectroscopic and kinetic study of the gas-phase CH3I-Cl and C2H5I-Cl adducts[J]. J. Phys. Chem. A., 2008, 112(39): 9535-9543.

[82] Piety C A, Soller R, Nicovich J M,et al. Kinetic and mechanistic study of the reaction of atomic chlorine with methyl bromide over an extended temperature range[J]. Chem. Phys., 1998, 231(231): 155-169.

[83] Orlando J J, Piety C A, Nicovich J M,et al. Rates and mechanisms for the reactions of chlorine atoms with iodoethane and 2-iodopropane[J]. J. Phys. Chem. A., 2005, 109(30): 6659-6675.

[84] Chambers R M, Heard A C, Wayne R P. Inorganic gas-phase reactions of the nitrate radical: iodine + nitrate radical and iodine atom + nitrate radical[J].J. Phys. Chem., 1992, 9(8): 3321-3331.

[85] Mahajan A S, Oetjen H, Saiz-Lopez A,et al. Reactive iodine species in a semi-polluted environment[J]. J. Geophy. Res. Lett., 2009, 3(16): 554-570.

[86] Wayne R P, Poulet G, Biggs P,et al. Halogen oxides: Radicals, sources and reservoirs in the laboratory and in the atmosphere[J]. Atmos. Environ., 1995, 29(20): 2677-2881.

[87] Enami S, Sakamoto Y, Yamanaka T,et al. Reaction mechanisms of IO radical formation from the reaction of CH3I with Cl atom in the presence of O2[J]. Bull. Chem. Soc. Jpn., 2008, 81(10): 1250-1257.

[88] Enami S, NakanoY, HashimotoS,et al. Reactions of Cl atoms with dimethyl sulfide: a theoretical calculation and an experimental study with cavity ring-down spectroscopy[J]. J. Phys. Chem. A., 2004, 108(39): 7785-7789.

[89] Eskola A J, Wojcik-Pastuszka D, Ratajczak E,et al. Kinetics of the reactions of CH2Br and CH2I radicals with molecular oxygen at atmospheric temperatures[J]. Phys. Chem. Chem. Phys., 2006, 8(12): 1416-1424.

[90] Stefanopoulos V G, Papadimitriou V C, Lazarou Y G,et al. Absolute rate coefficient determination and reaction mechanism investigation for the reaction of Cl atoms with CH2I2 and the oxidation mechanism of CH2I radicals[J]. J. Phys. Chem. A., 2008, 112(7): 1526-1535.

[91] Sehested J, Ellermann T, Nielsen O J. A spectrokineticstudy of CH2I and CH2IO2 radicals[J]. Int. J. Chem. Kinet., 1994, 2(2): 259-272.

[92] Dillon T J, Tucceri M E, Crowley J N. Laser induced fluorescence studies of iodine oxide chemistry. Part II. The reactions of IO with CH3O2, CF3O2 and O3[J]. Phys. Chem. Chem. Phys., 2006, 8(44): 5185-5198.

[93] Larin I K, Nevozhai D V, Spasskii A I,et al. Measurement of rate constants for the reaction of iodine monoxide with ozone[J]. Kinet. Catal., 1999, 40(4): 435-442.

[94] Gmez Martín J C, Plane J M C. Determination of the O-IO bond dissociation energy by photofragment excitation spectroscopy[J].Chem. Phys. Lett., 2009, 474(1-3): 79-83.

[95] Drougas E, Kosmas A M. Computational studies of (HIO3) isomers and the HO2+IO reaction pathways[J]. J. Phys. Chem. A., 2005, 109(31): 3887-3892.

[96] Maguin F, Laverdet G, Bras G L,et al. Kinetic study of the reactions iodine monoxide+hydroperoxo and iodine monoxide+nitrogen dioxide at 298 K[J]. J. Phys. Chem., 2002, 9(4): 1775-1780.

[97] Enami S, Hoshino Y, Kawasaki M,et al. A kinetic study of the gas-phase reactions of OIO with NO, NO2, and Cl2[J]. Int. J. Chem. Kinet., 2007, 39(12): 688-693.

[98] Papayannis D K, Kosmas A M. Theoretical investigation of the mechanism of the reaction IO+NO→I+NO2[J]. Chem. Phys. Lett., 2006, 432(4): 391-397.

[99] Nakano Y, Enami S, Nakamichi S,et al. Temperature and pressure dependence study of the reaction of IO radicals with dimethyl sulfide by cavity ring-down laser spectroscopy[J]. J. Phys. Chem. A., 2003, 107(33): 6381-6387.

[100] Drougas E, Kosmas A M. Ab initio characterization of (CH3IO3) isomers and the CH3O2+IO reaction pathways[J]. J. Phys. Chem. A., 2007, 111(17): 3402-3408.

[101] Wren S N, Kahan T F, Jumaa K B,et al. Spectroscopic studies of the heterogeneous reaction between O3 (g) and halides at the surface of frozen salt solutions[J]. J. Geophy. Res.: Atmos., 2010, 115(D16): 751-763.

[102] O’Driscoll P, Lang K, Minogue N,et al. Freezing halide ion solutions and the release of interhalogens to the atmosphere[J]. J. Phys. Chem. A, 2006, 110(14): 4615-4618.

[103] O’Driscoll P, MinogueN, TakenakaN,et al. Release of nitric oxide and iodine to the atmosphere from the freezing of sea-salt aerosol components[J]. J. Phys. Chem. A., 2008, 112(8): 1677-1682.

[104] Martino M, Liss P S, Plane J M C. Wavelength-dependence of the photolysis of diiodomethane in seawater[J].J. Geophy. Res. Lett., 2006, 33(6): 7921-7922.

[105] Wada R, Beames J M, Orr-Ewing A J. Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer[J].J. Atmos. Chem., 2007, 58(1): 69-87.

[106] Allan B J, Plane J M C, Mcfiggans G. Observations of OIO in the remote marine boundary layer[J].J. Geophy. Res. Lett., 2001, 28(10): 1945-1948.

[107] Read K A, Mahajan A S, Carpenter L J,et al. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean[J]. Nature, 2008, 453(7199): 1232-1235.

[108] Martinez M, Arnold T, Perner D. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny-lesund and comparison with model calculations[J].Ann. Geophys., 1999, 17(7): 941-956.

[109] Mahajan A S, Marvin S, Hilke O,et al. Evidence of reactive iodine chemistry in the Arctic boundary layer[J]. J. Geophys. Res.: Atmos., 2010, 115(D20): 303-314.

[110] Amachi S, Kamagata Y, Kanagawa T,et al. Bacteria mediate methylation of iodine in marine, and terrestrial environments[J]. Appl. Environ. Microbiol., 2001, 67(6): 2718-2722.

[111] Smoydzin L.Modelling Gas Phase and Aerosol Phase Chemistry in the Atmospheric Boundary Layer[D]. Heidelberg: Doctorial Dissertation of University of Heidelberg, 2008.

[112] Solomon S, Garcia R R, Ravishankara A R. On the role of iodine in ozone depletion[J].J. Geophy. Res.: Atmos., 1994, 99(992): 20491-20500.

[113] Wennberg P O, Brault J W, Hanisco T F. The atmospheric column abundance of IO: Implications for stratospheric ozone[J].J. Geophy. Res. D., 1997, 102(D7): 8887-8898.

[114] O’Dowd C D, Hmeri K, Mkel J M,et al. A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements[J]. J. Geophy. Res.: Atmos., 2002, 107(D19): PAR 1-1-PAR 1-16.

[115] Heard D E, Read K A, Methven J,et al. The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002[J]. Atmos. Chem. Phys., 2006, (8): 2241-2272.

[116] Jimenez J L, Bahreini R, Cocker D R,et al. New particle formation from photooxidation of diiodomethane (CH2I2)[J]. J. Geophy. Res.: Atmos., 2003, 108(D23): 4318-4343.

[117] Cox R A, Coker G B. Absorption cross section and kinetics of IO in the photolysis of CH3I in the presence of ozone[J]. J. Phys. Chem., 1983, 87: 4478-4484.

[118] Daehlie G, Kjekshus A. Iodine oxides I on I2O3, SO3, I2O3, 4SO3, H2O, I2O3, SEO3 and I2O4[J]. Acta Chem. Scand., 1964, 18(1): 144.

[119] Katzin L I. Note on the absorption spectrum of iodine in oxygenated solvents and the dissociation of iodine water[J].J. Chem. Phys., 1953, 21(3): 490-491.

[120] Mcfiggans G, Artaxo P, Baltensperger U,et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation[J]. Atmos. Chem. Phys., 2006, (9): 2593-2649.

[121] Peng B X, Li L, Wu D S. Distribution of bromine and iodine in thermal power plant[J].J. Coal. Sci. Eng.(China), 2013, 19(3): 387-391.

[122] 刘 崴, 杨红霞, 李 冰. 电感耦合等离子体质谱在高碘区碘含量分布特征中的应用[J]. 内蒙古师大学报: 自然汉文版, 2014(6): 703-707.

    Liu Wei, Yang Hongxia, Li Bing, The application of nductively coupled plasma mass spectrometry in the distribution characteristics of high iodine area[J].Journal of Inner Mongolia Normal University: Natural Science Edition, 2014(6): 703-707(in Chinese).

[123] Xu S Q, Xie Z Q, Liu W,et al. Extraction and determination of total bromine, iodine, and their species in atmospheric aerosol[J]. Chin. J. Anal. Chem., 2010, 38(2): 219-224.

[124] Gao Y, Sun M, Wu X,et al. Concentration characteristics of bromine and iodine in aerosols in Shanghai, China[J]. Atmos. Environ., 2010, 44(34): 4298-4302.

韦娜娜, 胡长进, 周闪闪, 马乔, 盖艳波, 林晓晓, 顾学军, 唐小锋, 方波, 赵卫雄, 张为俊, 吴代赦. 大气碘化学与含碘气溶胶形成机制的研究进展[J]. 大气与环境光学学报, 2018, 13(1): 1. WEI Nana, HU Changjin, ZHOU Shanshan, Ma Qiao, GAI Yanbo, LIN Xiaoxiao, GU Xuejun, TANG Xiaofeng, Fang Bo, ZHAO Weixiong, ZHANG Weijun, WU Daishe. Rresearch Process on Atmospheric Chemistry of Iodine and Formation of Iodine Oxide Particles[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(1): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!