Photonics Research, 2019, 7 (3): 03000246, Published Online: Feb. 20, 2019   

Conversion between polarization states based on a metasurface Download: 695次

Author Affiliations
Shandong Provincial Key Laboratory of Optics and Photonic Device & School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Copy Citation Text

Shuyun Teng, Qi Zhang, Han Wang, Lixia Liu, Haoran Lv. Conversion between polarization states based on a metasurface[J]. Photonics Research, 2019, 7(3): 03000246.

References

[1] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337.

[2] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 2013, 339: 1232009.

[3] L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 2012, 12: 5750-5755.

[4] B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, T. Pertsch. Spatial and spectral light shaping with metamaterials. Adv. Mater., 2012, 24: 6300-6304.

[5] G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 2015, 10: 308-312.

[6] R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, K. Y. Zhou, J. L. Liu, S. L. Qu, S. T. Liu, J. Gao. Arbitrary focusing lens by holographic metasurface. Photon. Res., 2015, 3: 252-255.

[7] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190-1194.

[8] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349: 1310-1314.

[9] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 2015, 10: 937-943.

[10] F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, A. V. Kildishev. Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach. ACS Nano, 2015, 9: 4111-4119.

[11] Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, J. G. Tian. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photon., 2017, 4: 2061-2069.

[12] N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, A. Broadband. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 2012, 12: 6328-6333.

[13] M. Kang, T. H. Feng, H. T. Wang, J. Li. Wave front engineering from an array of thin aperture antennas. Opt. Express, 2012, 20: 15882-15890.

[14] Y. Zhao, A. Alù. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B, 2011, 84: 205428.

[15] Y. Zhao, A. Alù. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett., 2013, 13: 1086-1091.

[16] E. Hasman, V. Kleiner, G. Biener, A. Niv. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett., 2003, 82: 328-330.

[17] C. Menzel, C. Rockstuhl, F. Lederer. An advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 2010, 82: 053811.

[18] F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, J. Zhao. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer. Photon. Res., 2018, 6: 157-161.

[19] P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, J. Tian. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt. Lett., 2015, 40: 3229-3232.

[20] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, X. Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 2016, 3: 1558-1563.

[21] Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, S. Y. Teng. Vector beam generation based on the nanometer-scale rectangular holes. Opt. Express, 2017, 25: 33480-33486.

[22] Q. Zhang, H. Wang, L. X. Liu, S. Y. Teng. Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination. Opt. Express, 2018, 26: 24145-24153.

[23] TafloveA.HagnessS. C., Computational Electro Dynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

[24] PalikE. D., Handbook of Optical Constants of Solids (Academic, 1985).

Shuyun Teng, Qi Zhang, Han Wang, Lixia Liu, Haoran Lv. Conversion between polarization states based on a metasurface[J]. Photonics Research, 2019, 7(3): 03000246.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!