光子学报, 2017, 46 (11): 1128003, 网络出版: 2017-12-08   

一种高精度中红外大气甲烷传感系统的研制

Highly-Accuract Mid-Infrared Atmospheric Methane Sensor System
作者单位
1 汕头大学 工学院, 广东 汕头 515063
2 吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室 吉林大学实验区, 长春 130012
摘要
报道了一种采用中红外室温连续带间级联激光器(ICL)的高精度大气甲烷检测系统.使用的ICL激光器的发光波数范围为2 998.4~2 999.6 cm-1, 覆盖甲烷在2 999.06 cm-1处的较强吸收峰.为增强气体吸收, 采用容积为220 mL、吸收光程为54.6 m多通池作为气体吸收池.采用LabVIEW平台和数据采集卡, 产生激光器扫描及调制信号, 同时获取探测器信号并采用数字运算提取二次谐波.实验结果显示, 当传感器系统的平均采样时间为3.3 s时, 传感器系统的阿伦方差为11.2 ppbv.采用该系统对实验室内外空气中甲烷浓度进行了长时间的测量, 证实该传感器系统具有较强的工程实用价值.
Abstract
A highly-accurate atmospheric CH4 sensor system using mid-infrared room-temperature Continuous-Wave (CW) Interband Cascade Laser (ICL) was reported. The emitting wavenumber range of the ICL is from 2 998.4 to 2 999.6 cm-1, which covers a strong CH4 absorption line at 2 999.06 cm-1. In order to enhance CH4 absorption, a multi-pass gas cell with a volume of 220 mL, optical path length of 54.6 m was employed. A LabVIEW platform as well as a Data Acquisition Card (DAQ) was used to generate the scan and modulation signal of the ICL and extract the second harmonic signal from the detector output signal. Experimental results showed that when the averaging sampling time was 3.3 s, the Allan deviation of the sensor system was 11.2 ppbv. This sensor system was used to measure the atmospheric CH4 inside and outside the laboratory for a long time, and it is proved to be of great practical value in engineering.
参考文献

[1] BAMBERGER I, STIEGER J, BUCHMANN N, et al. Spatial variability of methane: Attributing atmospheric concentrations to emissions[J]. Environmental Pollution, 2014, 190: 65-74.

[2] SMITH F A, ELLIOTT S, BLAKE D R, et al. Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico[J]. Environmental Science & Policy, 2002, 5(6): 449-461.

[3] SIMPSON I J, ROWLAND F S, MEINARDI S, et al. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane[J]. Geophysical Research Letters, 2006, 33(22): L22808.

[4] XIAO Y, LOGAN J A, JACOB D J, et al. Global budget of ethane and regional constraints on U.S. sources[J]. Journal of Geophysical Research, 2008, 113(D21): D21306.

[5] ETIOPE G, CICCIOLI P. Earth′s degassing: a missing ethane and propane source[J]. Science, 2009, 323(5913): 478.

[6] PAREDI P, KHARITONOV S A, BARNES P J. Elevation of exhaled ethane concentration in asthma[J]. American Journal of Respiratory and Critical Care Medicine, 2000, 162(4): 1450-1454.

[7] 庞涛, 王煜, 夏滑, 等. 基于TDLAS技术的全量程激光甲烷传感器[J]. 光子学报, 2016, 45(9):0912003

    PANG Tao, WANG Yu, XIA Hua, et al. Full scale methane sensor based on TDLAS technology[J]. Acta Optica Sinica, 2016, 45(9): 0912003

[8] LANCASTER D G, WEIDNER R, RICHTER D, et al. Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3[J]. Optics Communications, 2000, 175(4-6): 461-468.

[9] FISCHER C, SIGRIST M W. Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system[J]. Applied Physics B, 2002, 75(2-3): 305-310.

[10] PETROV K P, WALTMAN S, DLUGOKENCKY E J, et al. Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN[J]. Applied Physics B, 1997, 4(5): 567-572.

[11] SILVER J A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods[J]. Applied Optics, 1992, 31(6): 707-717.

[12] 曾怡帅, 杨友良, 马翠红. 有尘环境多组分气体成分检测系统的设计[J]. 发光学报, 2016, 37(7):859-865.

    ZENG Yi-shuai, YANG You-liang, MA Cui-hong. Design of the detection system of multi component gas composition in dust environment[J]. Chinese Journal of Luminescence, 2016, 37(7): 859-865.

[13] WERLE P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochim Acta A, 1998, 54(2): 197-236.

[14] SCHILT S, THEVENAZ L, ROBERT P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 2003, 42(33): 6728-6738.

[15] 刘慧芳, 李彬, 何启欣, 等. 数字正交锁相放大器的研制及其在甲烷检测中的应用[J]. 光子学报, 2016, 45(4):0423004.

    LIU Hui-fang, LI Bin, HE Qi-xin, et al. Development of a digital orthogonal lock-in amplifier and its application in methane detection[J]. Acta Optica Sinica, 2016, 45(4): 0423004.

[16] LIU K, LIU T, JIANG J, et al. Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection[J]. Journal of Lightwave Technology, 2011, 29(1): 15-21.

[17] MEI L, SVANBERG S. Wavelength modulation spectroscopy-digital detection of gas absorption harmonics based on Fourier analysis[J]. Applied Optics, 2015, 54(9): 2234-2243.

[18] REID J, BRIE D. Second harmonic detection with tunable diode lasers-comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203-210.

叶玮琳, 何迅, 孟永贤, 郑志丹, 郑传涛. 一种高精度中红外大气甲烷传感系统的研制[J]. 光子学报, 2017, 46(11): 1128003. YE Wei-lin, HE Xun, MENG Yong-xian, ZHENG Zhi-dan, ZHENG Chuan-tao. Highly-Accuract Mid-Infrared Atmospheric Methane Sensor System[J]. ACTA PHOTONICA SINICA, 2017, 46(11): 1128003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!