Journal of Innovative Optical Health Sciences, 2016, 9 (3): 1630008, Published Online: Dec. 27, 2018  

Assessing low-light cameras with photon transfer curve method

Author Affiliations
1 Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan 430074, P. R. China
2 Key Laboratory of Biomedical Photonics of Ministry of Education Department of Biomedical Engineering, Huazhong University of Science and Technology Wuhan 430074, P. R. China
Abstract
Low-light camera is an indispensable component in various fluorescence microscopy techniques. However, choosing an appropriate low-light camera for a specific technique (for example, single molecule imaging) is always time-consuming and sometimes confusing, especially after the commercialization of a new type of camera called sCMOS camera, which is now receiving heavy demands and high praise from both academic and industrial users. In this tutorial, we try to provide a guide on how to fully access the performance of low-light cameras using a well-developed method called photon transfer curve (PTC). We first present a brief explanation on the key parameters for characterizing low-light cameras, then explain the experimental procedures on how to measure PTC. We also show the application of the PTC method in experimentally quantifying the performance of two representative low-light cameras. Finally, we extend the PTC method to provide offset map, read noise map, and gain map of individual pixels inside a camera.
References

[1] B. Moomaw, "Camera technologies for low light imaging: Overview and relative advantages," Method. Cell Biol. 114, 243–283 (2013).

[2] X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, S. Cova, "Development of new photon-counting detectors for single-molecule fluorescence microscopy," Philosophical Trans. R. Soc. B: Biol. Sci. 368, 20120035 (2012).

[3] X. Michalet, O. H. Siegmund, J. V. Vallerga, P. Jelinsky, J. E. Millaud, S. Weiss, "Detectors for single-molecule fluorescence imaging and spectroscopy," J. Mod. Opt. 54, 239 (2007).

[4] L. M. Hirvonen, S. Jiggins, N. Sergent, G. Zanda, K. Suhling, "Photon counting imaging with an electron-bombarded CCD: Towards a parallelprocessing photoelectronic time-to-amplitude converter," Rev. Sci. Instrum. 85, 123102 (2014).

[5] T. Brugière, F. Mayer, P. Fereyre, C. Guerin, A. Dominjon, R. Barbier, "First measurement of the inpixel electron multiplying with a standard imaging CMOS technology: Study of the EMCMOS concept," Nucl. Instrum. Methods Phys. Res. A 787, 336–339 (2015).

[6] G. E. Smith, "Nobel Lecture: The invention and early history of the CCD," Rev. Mod. Phys. 82, 2307–2312 (2010).

[7] R. Brewer, "The low light level potential of a CCD imaging array," IEEE. T. Electron Dev. 27, 401– 405 (1980).

[8] H. Kr€oger, G. Schmidt, N. Pailer, "Faint object camera: European contribution to the hubble space telescope," Acta Astronaut. 26, 827–834 (1992).

[9] M. S. Robbins, B. J. Hadwen, "The noise performance of electron multiplying charge-coupled devices," IEEE. T. Electron Dev. 50, 1227–1232 (2003).

[10] E. R. Fossum, "CMOS image sensors: Electronic camera-on-a-chip," IEEE. T. Electron Dev. 44, 1689–1698 (1997).

[11] M. Bigas, E. Cabruja, J. Forest, J. Salvi, "Review of CMOS image sensors," Microelectron. J. 37, 433– 451 (2006).

[12] B.Fowler, C. Liu, S. Mims, J.Balicki,W. Li,H.Do, J. Appelbaum, P. Vu, "A 5.5 Mpixel 100 frames/secwide dynamic range low noise CMOS image sensor for scienti fic applications," Proc. SPIE 7536, 753607 (2010).

[13] Z. L. Huang, H. Zhu, F. Long, H. Ma, L. Qin, Y. Liu, J. Ding, Z. Zhang, Q. Luo, S. Zeng, "Localizationbased super-resolution microscopy with an sCMOS camera," Opt. Express 19, 19156–19168 (2011).

[14] F. Huang, T. M. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, "Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms," Nat. Methods 10, 653–658 (2013).

[15] F. Long, S. Zeng, Z. L. Huang, "Localization-based super-resolution microscopy with an sCMOS camera Part II: Experimental methodology for comparing sCMOS with EMCCD cameras," Opt. Express 20, 17741–17759 (2012).

[16] R. Yuste, A. Konnerth, Imaging in Neuroscience and Development, Cold Spring Harbor Lab. Press, New York (2004).

[17] T. J. Lambert, J. C. Waters, "Assessing camera performance for quantitative microscopy," Quantitative Imaging in Cell Biology, Chap. 3, J. C. Waters, T. Wittman, Eds., pp. 35–53, Elsevier, NewYork (2013).

[18] J. R. Janesick, Photon Transfer: DN→λ, SPIE Press, Washington, USA (2007).

[19] K. Narisada, D. Schreuder, Light Pollution Handbook, Springer, Netherlands (2004).

[20] Labsphere, "Integrating sphere theory and applications," [Online], Available at: https://www. labsphere.com/site/assets/files/2551/a-guide-to-integrating- sphere-theory-and-applications.pdf. Accessed on 26 February 2016.

[21] F. Long, S. Q. Zeng, Z. L. Huang, "Effects of fixed pattern noise on single molecule localization microscopy," Phys. Chem. Chem. Phys. 16, 21586–21594 (2014).

[22] J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd Edition, University Science Books, Sausalito (1997).

[23] E. W. Weisstein, "Standard deviation distribution." [Online], Available at: http://mathworld.wolfram. com/StandardDeviationDistribution.html.

[24] E. W. Weisstein, "Sample variance distribution." [Online], Available at: http://mathworld.wolfram. com/SampleVarianceDistribution.html.

[25] S. Ahn, J. A. Fessler, "Standard errors of mean, variance, and standard deviation estimators", [Online], Available at: https://pdfs.semanticscholar. org/ba2b/131bc7b442c3f7f4641339f3549f69b15a9b. pdf. [Accessed: 26-Feb-2016].

[26] Andor, "Sensitivity", [Online], Available at: http:// www.andor.com/learning-academy/sensitivity-making- sense-of-sensitivity.Accessed on 26February 2016.

[27] H. Tian, Noise analysis in CMOS image sensors, Ph.D. Thesis, Stanford University, CA, (2000).

[28] PCO, "pco sCMOS brochure", [Online], Available at: http://www.pco.de/fileadmin/user upload/pcoproduct sheets/pco sCMOS brochure.pdf. Accessed on 26 February 2016.

[29] Hamamatsu, "ORCA-Flash4.0 V2", [Online], Available at: https://www.hamamatsu.com/resources/ pdf/sys/SCAS0081E C11440-22CU.pdf. Accessed on 26 February 2016.

Luchang Li, Mengting Li, Zhaoning Zhang, Zhen-Li Huang. Assessing low-light cameras with photon transfer curve method[J]. Journal of Innovative Optical Health Sciences, 2016, 9(3): 1630008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!