半导体光电, 2018, 39 (1): 37, 网络出版: 2018-08-30   

基于石墨烯薄膜的光纤微压传感器的设计

Design of Micro-pressure Sensor Based on Graphene Diaphragm
葛益娴 1,2,3,*张鹏 3赵伟绩 3
作者单位
1 江苏省大气环境与装备技术协同创新中心
2 江苏省气象探测与信息处理重点实验室
3 南京信息工程大学 电子与信息工程学院, 南京 210044
摘要
以新型的石墨烯材料为压力敏感膜, 设计了一种基于法布里-珀罗干涉的光纤微压传感器。利用薄膜光学理论, 分析了不同层数石墨烯膜的反射率特性。仿真结果表明, 增加层数可以提高石墨烯膜的反射率。根据光传输矩阵的理论, 研究并模拟了法珀腔的几何参数对反射信号的影响。通过分析对比几种大挠度圆膜应变的理论, 建立了石墨烯薄膜的压力敏感特性模型, 并利用ANSYS静态力学非线性对模型的挠度形变特性进行有限元仿真, 验证了模型的准确性, 为设计制作基于石墨烯薄膜的光纤微压传感器提供了理论基础。
Abstract
Based on the new type graphene material as the pressure sensitive diaphragm, a kind of optical fiber micro-pressure sensor based on Fabry-Perot interference was designed. The reflectivity characteristics of graphene films were analyzed with the theory of thin film optics. Simulation results show that increasing the number of layers can improve the reflectivity of graphene films. According to the theory of optical transmission matrix, the influence of the geometric parameters of the F-P cavity on the reflected signal was studied and simulated. The pressure-sensitive characteristic model of graphene film was established by analyzing the theory of several large deflection circular film strain. The finite element simulation of the deflection behavior of the model was carried out by ANSYS static mechanics nonlinearity, which verifies the accuracy of the model, providing a theoretical basis for the design of optical fiber micro-pressure sensor based on graphene film.
参考文献

[1] 江小峰, 林 春, 谢海鹤, 等. MEMS F-P干涉型压力传感器[J]. 红外与激光工程, 2014, 43(7): 2257-2262.

    Jiang Xiaofeng, Lin Chun, Xie Haihe, et al. MEMS F-P interferometry pressure sensor[J]. Infrared and Laser Eng., 2014, 43(7): 2257-2262.

[2] 曹 群, 贾平岗, 熊继军, 等. MEMS光纤法珀压力传感器的设计及解调方法实现[J]. 传感技术学报, 2015, 28(8): 1141-1148.

    Cao Qun, Jia Pinggang, Xiong Jijun, et al. Design of MEMS optical fiber pressure sensor and demodulation method implementation[J]. Chinese J. of Sensors and Actuators, 2015, 28(8): 1141-1148.

[3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[4] Liang X, Sperling B A, Calizo I, et al. Toward clean and crackless transfer of graphene[J]. Acs Nano, 2011, 5(11): 9144-9153.

[5] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.

[6] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

[7] Ma J, Jin W, Ho H L, et al. High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J]. Opt. Lett., 2012, 37(13): 2493-2495.

[8] Ma J, Xuan H, Ho H L, et al. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm[J]. IEEE Photon. Technol. Lett., 2013, 25(10): 932-935.

[9] 李学金,张百钢, 姚建铨, 等. 一种光纤压力传感器的设计理论分析[J]. 传感技术学报, 2004,17(1): 133-135.

    Li Xuejin, Zhang Baigang, Yao Jianquan, et al. Theoretical analyses on parameter option of a pressure fiber sensor[J]. Chinese J. of Sensors and Actuators, 2004,17(1): 133-135.

[10] Kogelnik H, Li T. Laser beams and resonators[J]. Proc. of the IEEE, 1966, 5(10): 1550-1567.

[11] Gong Y, Rao Y J, Guo Y, et al. Temperature-insensitive micro Fabry-Pérot strain sensor fabricated by chemically etching Er-doped fiber[J]. IEEE Photon. Technol. Lett., 2009, 21(22): 1725-1727.

[12] 葛益娴, 王 鸣. 基于相位解调的光纤MEMS压力传感器[J]. 功能材料与器件学报, 2008, 14(2): 472-475.

    Ge Yixian, Wang Ming. A MEMS pressure sensor based on a phase demodulation method[J]. J. of Func. Mater. and Devices, 2008, 14(2): 472-475.

[13] 陈绪兴, 王 鸣, 戎 华, 等. 基于波长解调的Fabry-Perot型光纤MEMS压力传感器的设计[J]. 传感技术学报, 2006, 19(5): 1875-1877. Chen Xuxing, Wang Ming, Rong Hua, et al. A novel Fabry-Perot MEMS fiber pressure sensor based on phase demodulation method[J]. Chinese J. of Sensors and Actuators, 2006, 19(5): 1875-1877.

[14] Li C, Xiao J. Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors[J]. Microsystem Technol., 2015(11): 2297-2306.

[15] Falkovsky L A. Optical properties of graphene[J]. J. of Experimental & Theoretical Physics, 2008, 115(129): 012004.

[16] Von Karman T. Festigkeits probleme in maschinenbau[J]. Encyklopqdie der Mathematischen Wissenschaften, 1910, (4): 311-385.

[17] Chien W Z. Large deflection of a circular clamped plate under uniform pressure[J]. Act. Phys. Sin., 1947, 7(2): 102-113.

[18] Beams J W. The Structure and Properties of Thin Film[M]. New York: John Wiley and Sons, 1959.

[19] 李 成, 肖 俊, 郭婷婷, 等. 石墨烯薄膜压力敏感特性的模型仿真研究[J]. 功能材料, 2014, 45(9): 9018-9021.

    Li Cheng, Xiao Jun, Guo Tingting, et al. Model simulation analysis of pressure-sensitive characteristics based on graphene film[J]. J. of Func. Mater., 2014, 45(9): 9018-9021.

葛益娴, 张鹏, 赵伟绩. 基于石墨烯薄膜的光纤微压传感器的设计[J]. 半导体光电, 2018, 39(1): 37. GE Yixian, ZHANG Peng, ZHAO Weiji. Design of Micro-pressure Sensor Based on Graphene Diaphragm[J]. Semiconductor Optoelectronics, 2018, 39(1): 37.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!