中国激光, 2013, 40 (1): 0114003, 网络出版: 2012-12-21   

光纤主轴方位角对光纤电流传感器的影响

Effects of Azimuth of Fiber Optic Principal Axes on Fiber Optic Current Sensors
作者单位
哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
摘要
为提高光纤电流传感器的标度因数稳定性,从传感光纤与光纤1/4波片熔接时的方位角出发,研究了方位角的优化对光纤内线性双折射变化的抑制作用,指出了现有方位角优化方法中忽略的因素旋光角,并结合旋光角这一变量建立了更加精确的琼斯矩阵模型。仿真分析了在不同方位角与旋光角条件下,线性双折射对标度因数稳定性的影响。通过仿真结果的对比发现,在考虑旋光角之后,现有算法的方位角优化值误差较大;还发现在特定的旋光角条件下,线性双折射的变化对标度因数无影响。基于此提出了方位角与旋光角的综合优化方法,降低了对光纤制造工艺的要求,有效提高了系统标度因数的稳定性。
Abstract
To improve the scale factor stability of fiber optic current sensors, effects of azimuth which is the fiber welding azimuth between a sensing fiber and a fiber quarter-wave plate are studied, so as to restrain the linear birefringence by optimizing the azimuth. Effects of optical rotatory angle which are ignored by existing azimuth optimization theory are considered and a more accurate Jones matrix model is proposed with this new variable. It is theoretically shown that the present optimization theory has some errors with the consideration of optical rotatory angle when analyzing the simulation results. The scale factor is immune to the variable linear birefringence with some optical rotatory angles. The combined optimization of the azimuth and optical rotatory angles is proposed. It can reduce the technical requirements of fibers and effectively enhance the stability of scale factors.
参考文献

[1] 陶邦胜. 光学技术在智能电网中的应用[J]. 江苏电机工程, 2010, 29(5): 82~84

    Tao Bangsheng. The application of the optical technology in smart grid[J]. Jiangsu Electrical Engineering, 2010, 29(5): 82~84

[2] 国家电网. 电子式互感器性能检测结果[EB]. 2012, http://www.sgcc.com.cn/images/ztzl/newzndw/rwpx/2012/02/29/E82874BAECAA4EA40FF47B4F7A98A11F.pdf

[3] 黄建华, 王佳. 光学电流互感器的关键技术[J]. 电力自动化设备, 2009, 29(12): 94~97

    Huang Jianhua, Wang Jia. Key technology of optical current transformer[J]. Electric Power Automation Equipment, 2009, 29(12): 94~97

[4] 李绪友, 郝金会, 杨汉瑞 等. 消除萨尼亚克光纤电流传感器振动干扰的光纤补偿环研究[J]. 中国激光, 2012, 39(2): 0205005

    Li Xuyou, Hao Jinhui, Yang Hanrui et al.. Research on the compensating fiber loop for eliminating vibration in Sagnac optic current sensor[J]. Chinese J. Lasers, 2012, 39(2): 0205005

[5] 陈淑英, 赵晶晶, 马静. 光纤陀螺加速退化试验的可行性[J]. 中国惯性技术学报, 2008, 16(5): 623~626

    Chen Shuying, Zhao Jingjing, Ma Jing. Feasibility of accelerated degradation test for FOG[J]. Journal of Chinese Inertial Technology, 2008, 16(5): 623~626

[6] S. X. Short, J. U. De Arruda, A. A. Tselikov et al.. Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor[J]. J. Lightwave Technol., 1998, 16(10): 1844~1850

[7] 王景飞, 梁京伟, 董前民. 反射式Sagnac干涉光纤电流互感器的传感头误差研究[J]. 激光与光电子学进展, 2011, 48(10): 102303

    Wang Jingfei, Liang Jingwei, Dong Qianmin. Study of sensing coil errors in in-line Sagnac interferometer current transducer[J]. Laser & Optoelectronics Progress, 2011, 48(10): 102303

[8] S. X. Short, J. U. De Arruda, J. N. Blake et al.. Stable scale factor performance of an in-line Sagnac interferometer current sensor[C]. The 12th International Conference on Optical Fiber Sensors, 1997. 100~103

[9] K. Bohnert, P. Gabus, J. Nehring et al.. Fiber optic current sensor for electrowinning of metals[J]. J. Lightwave Technol., 2007, 25(11): 3602~3609

[10] R. Wuest, A. Frank, S. Wiesendanger et al.. Influence of residual fiber birefringence and temperature on the high-current performance of an interferometric fiber-optic current sensor[C]. SPIE, 2009, 7356: 73560K

[11] R. Wuest, A. Frank, K. Bohnert et al.. Method for Manufacturing a Fiber Optic Current Sensor with Inherent Temperature Compensation of the Faraday Effect[P].USA: US 0072858A1,[2011-03-31]

[12] 魏光辉. 矩阵光学[M]. 北京: 兵器工业出版社, 1993. 168~169

    Wei Guanghui. Matrx Optics[M]. Beijing: Ordnance Industrial Press, 1993. 168~169

[13] G. Frosio, R. Dandliker. Reciprocal reflection interferometer for a fiber-optic Faraday current sensor[J]. Appl. Opt., 1994, 33(25): 6111~6122

[14] 张桂才. 光纤陀螺原理与技术[M]. 北京: 国防工业出版社, 2008. 50~55

    Zhang Guicai. The Principles and Technologies of Fiber-Optic Gyroscope[M]. Beijing: National Defence Industrial Press, 2008. 50~55

[15] K. Bohnert, P. Gabus, J. Nehring. Temperature and vibration insensitive fiber-optic current sensor[J]. J. Lightwave Technol., 2002, 20(2): 267~276

[16] 国家电网. 电子式电流互感器技术规范, Q/GDW 424-2010[S]. 北京: 国家电网公司, 2010

    National Grid. The Technical Specification for Electronic Current Transformers, Q/GDW 424-2010[S]. Beijing: National Grid, 2010

[17] 廖延彪. 光纤光学原理与应用[M]. 北京: 清华大学出版社, 2010. 79~80

    Liao Yanbiao. Fiber Optics: Principles and Applications[M]. Beijing: Tsinghua University Press, 2010. 79~80

[18] 苑立波. 温度和应变对光纤折射率的影响[J]. 光学学报, 1997, 17(12): 1713~1717

    Yuan Libo. Effect of temperature and strain on fiber optic refractive index[J]. Acta Optica Sinica, 1997, 17(12): 1713~1717

[19] 张靖华. 双折射光纤琼斯矩阵的一般表达式及反射传输特性[J]. 光子学报, 1997, 26(6): 527~531

    Zhang Jinghua. General expression of Jones matrix in birefringent fibers and reflective transmission characteristics[J]. Acta Photonica Sinica, 1997, 26(6): 527~531

王伟, 刘晓隆. 光纤主轴方位角对光纤电流传感器的影响[J]. 中国激光, 2013, 40(1): 0114003. Wang Wei, Liu Xiaolong. Effects of Azimuth of Fiber Optic Principal Axes on Fiber Optic Current Sensors[J]. Chinese Journal of Lasers, 2013, 40(1): 0114003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!