光子学报, 2010, 39 (11): 1921, 网络出版: 2010-12-07   

双零色散光子晶体光纤中超连续谱的产生及控制

Generation and Control of Supercontinuum in Photonic Crystal Fibers with Twozero Dispersion Wavelengths
方亮 1,2赵建林 1,2,*甘雪涛 1,2李鹏 1,2张晓娟 1,2
作者单位
1 西北工业大学 理学院 陕西省光信息技术重点实验室
2 教育部空间应用物理与化学重点实验室,西安 710072
摘要
通过数值模拟飞秒脉冲在具有双零色散波长的光子晶体光纤中的传输过程,详细分析了超连续谱的产生和控制机制.结果表明:中心波长处于反常色散区的泵浦脉冲在高阶非线性和高阶色散等作用的调制下,将演化为基孤子和正常色散区的两个色散波;该色散波进而经与之相位匹配的基孤子相干加强而使频谱展宽形成超连续谱,同时两个色散波上出现了干涉引起的振荡现象.进一步对比三种结构的光子晶体光纤中超连续谱的特点,定量分析了两色散波对超连续谱的限制作用,阐述了结构参量对超连续谱的影响.基于上述结论,结合对色散波的中心波长与光子晶体光纤的色散曲线、结构参量之间关系的分析,提出了设计光子晶体光纤的结构来控制超连续谱的方法.作为例证,通过优化光子晶体光纤结构理论上实现了频谱分量覆盖可见光区的平坦超连续谱.
Abstract
The generation and control mechanisms of a broadband supercontinuum (SC) in photonic crystal fibers (PCF) with twozero dispersion wavelengths are demonstrated by simulating the evolution process of a femtosecond pulse numerically. The results reveal that the intrinsic higherorder dispersions and nonlinear effects of PCFs cause the pump pulse, whose center wavelength locates between the anomalous dispersion region, decay into fundamental solitons and two dispersive waves simultaneously. In virtue to the enhancement of the two dispersive waves by their phasematched solitons, SC will be formed by the two dispersive waves, on which oscillations happen for the interference. Then, the limited effect on the SC applied by the two dispersive waves is analyzed quantitatively by comparing the SCs in three PCFs with different geometrical parameters. Meanwhile, the effects of the geometrical parameters are demonstrated. Based on the above conclusions, considering the analysis on the relationships between the center wavelengths of the dispersive waves and the dispersion curves of PCFs as well as their geometrical parameters, a method to control the range of SC is promoted based on the design of the geometrical parameters. As an example, a flat SC extending to the visible region is achieved by optimizing the geometrical parameter in theory.
参考文献

[1] . Emission in the region 4000 to 7000 via fourphoton coupling in glass[J]. Phys Rev Lett, 1970, 24(11): 584.

[2] . Design of nearly zero dispersion flattened photonic crystal fiber with double cladding[J]. Chinese Physics Letters, 2009, 26(5): 054204.

[3] . Highly nonlinear dispersionflattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Opt Express, 2004, 12(10): 2027.

[4] 王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展[J].中国激光,2006,33(1):5766.

    WANG Qingyue, HU Minglie, CHAI Lu. Progress in nonlinear optics with photonic crystal fibers[J]. Chinese Journal of Lasers,2006, 33(1): 5766.

[5] . Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett, 2000, 25(1): 25.

[6] 方平,杨直,王屹山,等.数值模拟亚纳秒脉冲产生超连续谱的一种改进方法[J].光子学报,2010,39(1):1620.

    FANG Ping, YANG Zhi, WANG Yishan, et al. An improved simulation method of supercontinuum generated by subnanosecond pulse[J]. Acta Photonica Sinica, 2010, 39(1): 1620.

[7] 李晓青,张书敏,李丹,等.光子晶体光纤中超连续谱产生的理论与实验研究[J].光子学报,2008,37(9):18051809.

    LI Xiaoqing, ZHANG Shumin, LI Dan, et al. Experimental and numerical study of supercontimuum generation in photonic crystal fiber[J]. Acta Photonica Sinica, 2008, 37(9): 18051809.

[8] . Spectrallybounded continuouswave supercontinuum generation in a fiber with two zerodispersion wavelengths[J]. Opt Express, 2008, 16(9): 6745.

[9] . Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser[J]. Opt Express, 2008, 16(9): 14435.

[10] 刘卫华,宋啸中,王屹山,等.飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究[J].物理学报,2008,57(2):917922.

    LIU Weihua, SONG Xiaozhong, WANG Yishan, et al. Experimental research of supercontinuum generation by femtosecond pulse in highly nonlinear photonic crystal fiber[J]. Acta Physica Sinica, 2008, 57(2): 917922.

[11] 陈泳竹,李玉忠,徐文成.色散平坦渐减光纤产生平坦超宽超连续谱的特性研究[J]. 物理学报, 2008, 57(12): 76937698.

    CHEN Yongzhu, LI Yuzhong, XU Wencheng. Research on flat ultrawideband supercontinuum generated in dispersionflattened decreasing fiber[J]. Acta Physica Sinica, 2008, 57(12): 76937698.

[12] 季玲玲,陈伟,曹迎春,等.双折射光子晶体光纤中基于孤子分裂的超连续光谱产生[J].物理学报,2009,58(8):54625466.

    JI Lingling, CHEN Wei, CAO Yingchun, et al. Supercontinuum generation based on fission of higherorder solitons in birefringent photonic crystal fibers[J]. Acta Physics Sinica, 2009, 58(8): 54625466.

[13] 吴铭,刘海荣,黄德修.高非线性光子晶体光纤色散特性的研究[J].光学学报,2008,28(3):539542.

    WU Ming, LIU Hairong, HUANG Dexiu. Dispersion property in highly nonlinear photonic photonic crystal fiber[J]. Acta Optica Sinica, 2008, 28(3): 539542.

[14] . Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths[J]. Opt Express, 2004, 22(6): 1045.

[15] 伍剑,李玉华,娄采云,等.利用超连续谱光源产生超短光脉冲[J].光学学报,2000,20(3):325329.

    WU Jian, LI Yuhua, LOU Caiyun, et al. Ultrashort pulse generation from supercontinuum source[J]. Acta Optica Sinica, 2000, 20(3): 325329.

[16] . Soliton selffrequency shift cancellation in photonic crystal fibers[J]. Science, 2003, 301(5640): 1705.

[17] AGRAWAL G P.非线性光纤光学[M].贾东方,余震虹,谈斌,等,译.北京:电子工业出版社,2002:2735.

[18] 崔秀艳,赵建林,杨德兴,等.利用改进的分步傅里叶算法模拟超连续谱的产生[J].中国激光,2009,36(8):20462051.

    CUI Xiuyan, ZHAO Jianlin, YANG Dexing, et al. Simulation of supercontinuum generation by using modified splitstep fourier algorithm[J]. Chinese Journal of Lasers, 2009, 36(8): 20462051.

[19] . Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers[J]. IEEE Photon Technol Lett, 2004, 16(4): 1065.

[20] . Cherenkov radiation emitted by solitons in optical fibers[J]. Phys Rev A, 1995, 51(3): 2602.

[21] . Dispersive wave generation by solitons in microstructured optical fibers[J]. Opt Express, 2004, 12(1): 124.

方亮, 赵建林, 甘雪涛, 李鹏, 张晓娟. 双零色散光子晶体光纤中超连续谱的产生及控制[J]. 光子学报, 2010, 39(11): 1921. FANG Liang, ZHAO Jianlin, GAN Xuetao, LI Peng, ZHANG Xiaojuan. Generation and Control of Supercontinuum in Photonic Crystal Fibers with Twozero Dispersion Wavelengths[J]. ACTA PHOTONICA SINICA, 2010, 39(11): 1921.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!