大气与环境光学学报, 2019, 14 (4): 250, 网络出版: 2019-08-13   

新疆地区陆上风电场风机尾流特征分析

Analysis of Characteristics of Onshore Turbine Wakein Xinjiang
作者单位
1 中国海洋大学 海洋遥感研究所,山东 青岛 266100
2 青岛海洋科学与技术国家实验室区域海洋动力学与数值模拟功能实验室,山东 青岛 266100
摘要
风机的尾流效应会导致风能的转化效率下降,还会增加湍流引起的机械应力损伤,降低风机的稳定性和 服务寿命。为研究新疆地区陆上风电场风机尾流特征, 2015年11月于新疆地区陆上风电场使用脉冲相干多普勒激光雷达进行风场观测。通过分析得到 新疆地区陆上风电场风机尾流特征,主要包括风速损失率、尾流宽度、尾流长度及其平均结果, 最大风速损失率,尾流长度随时间的变化趋势、与风速之间的关系等,发现风速损失率、 尾流宽度、尾流长度与背景风速、湍流强度有关。
Abstract
The wind turbine wake can reduce the wind energy conversion efficiency, increase mechanical stress damage and reduce the life span of wind turbine. In order to study the characteristics of turbine wake in Xinjiang, China, the observation of wind based on pulse Doppler lidar was conducted in November 2015. The characteristics of wind turbine wake in Xinjiang were obtained, including the velocity deficit, wake width, wake length and average value of wake, variation of wake with time and relationship between wake and wind speed. The final results show that the velocity deficit, the wake width and the wake length are related to ambient wind velocity and wind turbulence intensity.
参考文献

[1] Crespo A, Hernández J, Frandsen S. Survey of modelling methods for wind turbine wakes and wind farms [J]. Wind Energy, 2015, 2(1): 1-24.

[2] Vermeer L J, S鴕ensen J N, Crespo A. Wind turbine wake aerodynamics [J]. Progress in Aerospace Sciences, 2003, 39(6): 467-510.

[3] Porté-Agel F, Wu Y T, Lu H, et al. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4): 154-168.

[4] Churchfield M J, Lee S, Michalakes J, et al. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics [J]. Journal of Turbulence, 2012, 13(14): 1-32.

[5] Abkar M , Porté-Agel, Fernando. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study [J]. Physics of Fluids, 2015, 27(3):035104.

[6] Elliott D L, Barnard J C. Observations of wind turbine wakes and surface roughness effects on wind flow variability [J]. Solar Energy, 1990, 45(5): 265-283.

[7] Jacobs E W, Kelley N D,Mckenna H E, et al. Wake Characteristics of the MOD2 Wind Turbine at Medicine Bow, Wyoming [C]. Fourth ASME Wind Energy Symposium, 1985.

[8] Hgstrom U, Asimakopoulos D N, Kambezidis H, et al. 1987: A field study of the wake behind a 2 MW wind turbine [J]. Atmospheric Environment(1967), 1988, 22(4): 803-820.

[9] Barthelmie R J,Folkerts L, Ormel F T, et al. Offshore wind turbine wakes measured by sodar [J]. Journal of Atmospheric and Oceanic Technology, 2002, 20(4): 466.

[10] Rhodes M E, Lundquist J K. The effect of wind-turbine wakes on summertime US midwest atmospheric wind profiles as observed with ground-based Doppler lidar [J]. Boundary-Layer Meteorology, 2013, 149(1): 85-103.

[11] Magnusson M, Smedman A S. A practical method to estimate wind turbine wake characteristics from turbine data and routine wind measurements [J]. Wind Engineering, 1996, 20(2): 73-92.

[12] Hall FF, Huffaker R M, Hardesty R M, et al. Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar [J]. Applied Optics, 1984, 23: 2503-2506.

[13] Banakh V A,Bodaruev V V, Smalikho I N. Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data [J]. Atmospheric and Oceanic Optics, 1997, 10: 957-965.

[14] Rahm S, Smalikho I. Aircraft wake vortex measurement with airborne coherent Doppler lidar [J]. Journal of Aircraft, 2008, 45(4): 1148-1155.

[15] Pichugina Y L, Banta R M. Stable boundary layer depth from high-resolution measurements of the mean wind profile [J]. Journal of Applied Meteorology and Climatology, 2010, 49(1): 20-35.

[16] O’Connor E J, Illingworth A J, Brooks I M, et al. A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements [J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(10): 1652-1664.

[17] Bingl F, Mann J, Larsen G C. Light detection and ranging measurements of wake dynamics part I: one dimensional scanning [J]. Wind Energy, 2010, 13(1): 51-61.

[18] Trujillo JJ, Bingl F, Larsen G C, et al. Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning [J]. Wind Energy, 2011, 14(1): 61-75.

[19] Sonnenschein C M, Horrigan F A. Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere [J]. Applied Optics, 1971, 10(7): 1600-1604.

[20] Ksler Y, Rahm S,Simmet R, et al. Wake measurements of a multi-mw wind turbine with coherent long-range pulsed Doppler wind lidar [J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(9): 1529-1532.

于晓庆, 吴松华. 新疆地区陆上风电场风机尾流特征分析[J]. 大气与环境光学学报, 2019, 14(4): 250. YU Xiaoqing, WU Songhua. Analysis of Characteristics of Onshore Turbine Wakein Xinjiang[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(4): 250.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!