红外与激光工程, 2019, 48 (9): 0913003, 网络出版: 2019-10-12   

双频外差结合相位编码的相位解包裹方法

Phase unwrapping method based on dual-frequency heterodyne combined with phase encoding
韩旭 1,2王霖 1,2伏燕军 1,2
作者单位
1 南昌航空大学 无损检测技术教育部重点实验室,江西 南昌 330063
2 南昌航空大学 测试与光电工程学院,江西 南昌 330063
摘要
为了使用高频条纹进行一次外差完成相位解包裹,实现高精度测量,提出了双频外差结合相位编码的相位解包裹方法。首先,用两组正弦条纹获得两个包裹相位,进行外差处理得到外差相位;其次,相位编码条纹得到条纹级次后对外差相位展开;最后,由连续的外差相位对两个包裹相位进行展开,用最高频率的连续相位求得物体的相位信息。实验结果表明:RMS误差为0.038 mm。双频外差合成的周期不需要覆盖整个视场,打破了传统双频外差方法对频率选择的限制,可以用更高频率的条纹进行高精度测量。克服了相位主值误差对使用更高频率条纹进行高精度测量的局限性。
Abstract
In order to complete phase unwrapping with a heterodyne of high frequency fringe and achieve high accuracy measurement, a phase unwrapping method of dual frequency heterodyne combined with phase coding was proposed. Firstly, two wrapping phases were obtained by two sinusoidal stripes, and one heterodyne phase was obtained by heterodyne processing; Secondly, the phase coding fringe was used to obtain the fringe order, and the heterodyne phase was unwrapped by fringe order; Finally, the two wrapping phases were unwrapped by continuous heterodyne phases, and the phase information of the object was obtained by using the continuous phase of the highest frequency. The experimental results show that the RMS error of the measurement is 0.038 mm. The period of dual-frequency heterodyne synthesis did not need to cover the whole field of view, thus breaking the limitation of frequency selection in traditional dual-frequency heterodyne method, which could be used for high accuracy measurement with higher frequency fringes. High frequency fringe can be used for high accuracy measurement even if there is error of phase principal value.
参考文献

[1] Dai M, Yang F, Liu C, et al. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector[J]. Optics Communications, 2017, 382(8): 294-301.

[2] Shan Lina, Yu Xiaoyang, Yu Shuang, et al. Three dimensional measurement method combining color trapezoidal phase-shifting with color gray code[J]. Optics and Precision Engineering, 2010, 18(11): 2497-2504. (in Chinese)

[3] Tian Ailing, Liu Ting, Liu Jian. High precision wavefront reconstruction technology for single interferogram[J]. Infrared and Laser Engineering, 2015, 44(4): 1203-1207.(in Chinese)

[4] Zuo C, Huang L, Zhang M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review[J]. Optics & Lasers in Engineering, 2016, 85(1):84-103.

[5] Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J]. JOSA A, 1994, 11(1): 107-117.

[6] Qian Xiaofan, Rao Fan, Li Xinghua, et al. Accurate least squares phase unwrapping algorithm[J]. Chinese J Lasers, 2012, 39(2): 183-187. (in Chinese)

[7] Wang Yonghong, Li Junrong, Sun Jianfei, et al. Frequency domain filtering for phase fringe patterns of digital speckle pattern interferometry [J]. Chinese Optics, 2014, 7(3): 389-395. (in Chinese)

[8] Yang T, Zhang G, Li H, et al. Hybrid 3D Shape measurement using the MEMS scanning micromirror[J]. Micromachines, 2019, 10(1): 47-61.

[9] Su X, Chen W. Reliability-guided phase unwrapping algorithm: a review[J]. Optics and Lasers in Engineering, 2004, 42(3): 245-261.

[10] Fang S, Wang L, Yang P, et al. Object-image-based method to construct an unweighted quality map for phase extraction and phase unwrapping[J]. Applied Optics, 2011, 50(10):1482-1487.

[11] Zhong H, Tang J, Zhang S, et al. A Quality-guided and local minimum discontinuity based phase unwrapping algorithm for InSAR/InSAS interferograms[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 11(1): 215-219.

[12] Sansoni G, Carocci M, Rodelia R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Applied Optics, 1999, 38(31): 6565-6573.

[13] Lu Feng, Wu Chengdong, Jia Tong, et al. Phase unwrapping based on two types of stair-mode [J]. Infrared and Laser Engineering, 2018, 47(8): 0826002.(in Chinese)

[14] Cho C S, Han J. Phase error reduction for multi-frequency fringe projection profilometry using adaptive compensation[J]. Current Optics and Photonics, 2018, 2(4): 332-339.

[15] Creath K. Step height measurement using two-wavelength phase-shifting interferometry[J]. Applied Optics, 1987, 26(14): 2810-2816.

[16] Ji Hongbin, Zhang Huibo, Dai Shijie, et al. Binary spatiotemporal encoded method used for uneven fringes phase unwrapping [J]. Infrared and Laser Engineering, 2017, 46(4): 0417004. (in Chinese)

[17] Xu Y, Jia S, Luo X, et al. Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities[J]. Optics Communications, 2013, 288: 27-30.

[18] Ghiglia D C, Pritt M D. Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software[M]. US: Wiley-Interscience, 1998.

[19] Reich C, Ritter R, Thesing J. 3D shape measurement of complex objects by combining photogrammetry and fringe projection[J]. Optical Engineering, 2000, 39(1): 224-231.

[20] Lei Zhihui, Li Jianbing. Full automatic phase unwrapping method based on projected double spatial frequency fringes[J]. Acta Optica Sinica, 2006, 26(1): 39-42. (in Chinese)

[21] Chen Songlin, Zhao Jibing, Xia Rengbo. Improvement of the phase unwrapping method based on multi-frequency heterodyne principle [J]. Acta Optica Sinica, 2016, 36(4):155-165.

[22] Yu S, Zhao J, Yu X Y, et al. 3D measurement using combined Gray code and dual-frequency phase-shifting approach[J]. Optics Communications, 2018, 413(2): 283-290.

韩旭, 王霖, 伏燕军. 双频外差结合相位编码的相位解包裹方法[J]. 红外与激光工程, 2019, 48(9): 0913003. Han Xu, Wang Lin, Fu Yanjun. Phase unwrapping method based on dual-frequency heterodyne combined with phase encoding[J]. Infrared and Laser Engineering, 2019, 48(9): 0913003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!