激光生物学报, 2019, 28 (5): 452, 网络出版: 2019-11-14  

QCM实时监测五价砷胁迫对水稻悬浮细胞粘弹性的影响

Real-time Monitoring of the Effect on the Viscoelasticity of Rice Suspension Cells with Arsenic(V)Stress Using QCM
周菲 1,2周铁安 1,2,*潘炜松 1,2
作者单位
1 湖南农业大学 a.细胞力学与生物传感研究所
2 b.生物科学技术学院, 长沙410128
摘要
本文通过QCM技术实时监测水稻悬浮细胞在不同浓度五价砷连续及单独胁迫下的粘弹性变化, 从细胞整体水平评估了重金属对水稻悬浮细胞力学性质的影响。结果表明: 1)在2~10 mmol/L范围内, 五价砷对水稻悬浮细胞的连续和单独胁迫的影响均随着浓度增加而增强; 2)在连续胁迫和单独胁迫下, 随着五价砷浓度的增加, 水稻悬浮细胞粘弹性指数均下降, 细胞软硬度减小即细胞变软; 3)在五价砷连续梯度浓度胁迫下, 水稻悬浮细胞粘弹性指数呈梯度下降; 4)在五价砷不同浓度单独胁迫下, 随着五价砷浓度的增加, 水稻悬浮细胞粘弹性指数变化逐渐平缓, 即水稻悬浮细胞随着五价砷浓度升高, 敏感程度降低。以期建立一种用来衡量重金属胁迫对植物影响的一种新方法。
Abstract
In this study,the effects of cell viscoelasticity under continuous and individual stress from different As(V)concentrations for the rice suspension cells was monitored in real-time by QCM and it was estimated on a overall level of cells. The results shows that: 1)In the range of 2~10 mmol/L,the effects of cell viscoelasticity under continuous and individual stress from As(V)increased with increasing concentrations of As(V); 2)Under continuous and individual stress,the viscoelasticity and hardness of rice suspension cells declined with the increasing concentrations of As(V); 3)The viscoelasticity index of rice cells declined under the stress of continuous gradient concentrations of As(V); 4)The sensitivity of rice suspension cells declined with the increasing concentrations of As(V).In the goal of establishing a new method to evaluate the effects of stresses of HMs on plants.
参考文献

[1] 张玉秀, 柴团耀, GERARD B.植物耐重金属机理研究进展[J] .植物学报, 1999, 41(5): 453-457.

    ZHANG Yuxiu, CHAI Tuanyao, GERARD B. Research advances on the mechanism of heavy metal tolerance in plants[J].Chinese Bulletin of Botany, 1999, 41(5): 453-457.

[2] BAKER A J M . Metal tolerance[J]. New Phytologist, 1987,106 (1): 93-111.

[3] VAN A F,CLIJSTERS H. Effects of metal on enzyme activity in plants[J].Plant Cell and Environment, 1990, 13(3): 195-206.

[4] CHEN G, LIU Y, WANG R, et al. Cadmium adsorption by willow root: the role of cell walls and their subfractions[J]. Environmental Science Pollution Research, 2013, 20 (8): 5665-5672.

[5] DALCORSO G, FARINATI S, FURINI A. Regulatory networks of cadmium stress in plants[J]. Plant Signaling and Behavior,2010, 5 (6): 663-667.

[6] THOMAS G, BURNHAM N A, CAMESANO T A, et al. Measuring the mechanical properties of living cells using atomic force microscopy[J].Journal of Visualized Experiments, 2013(76): e50497.

[7] RADOTIC K, RODUIT C, SIMONOVE J, et al. Atomic force microscopy stiffness tomography on living arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth[J]. Biophysical Journal, 2012, 103(3): 386-394.

[8] MAHAFFY R E, PRAK S, GERDE E, et al. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy[J]. Biophysical Journal, 2004, 86(3): 1777-1793.

[9] KUZNETSOVA T G, STARODUBTSEVA M N, YEGORENKOV N I, et al. Atomic force microscopy probing of cell elasticity[J]. Micron Technology, 2007, 38(8): 824-833.

[10] ZHOU T, ZHOU Z, ZHOU S, et al. Real-time monitoring of contractile properties of H9C2 cardiomyoblasts by quartz crystal microbalance [J]. Analytical Methods, 2015, 8(3): 488-495.

[11] 周铁安, MARX K A, BRAUNHUT S J, SUSAN J B. 石英微天平技术实时跟踪细胞-基质、细胞-细胞之间交互作用的动态变化[C].成都: 中国化学会学术年会第9分会场, 2012.

    ZHOU Tiean, MARX K A, BRAUNHUT S J. SUSAN J B. Real-time following cross talk between cell-substratum and cell-cell adhesions by Quartz Crystal Microbalance[C]. Summary of the 9th Session of the 28th Ammual Academic Conference of the Chinese Chemical Society, 2012.

[12] 陈国梁, 冯涛, 陈章, 等. 砷在农作物中的累积及其耐受机制研究综述[J]. 生态环境学报, 2017, 26(11): 1997-2002.

    CHEN Guoliang, FENG Tao, CHEN Zhang, et al. Research review on the mechanisms of arsenic uptake and its resistance in crops [J]. Ecology and Environmental Sciences, 2017, 26(11): 1997-2002.

[13] 尹德东, 胡宝忠.日本晴水稻悬浮细胞系的建立和保存[J].东北农业大学学报, 2006, 37(6): 750-754.

    YIN Dedong, HU Baozhong. Establishment and cryopreservation ofrice suspension cells line[J].Journal of Northeast Agricultural University, 2006, 37(6): 750-754.

[14] ZHOU T, MARK K A, DEWILDE A H, et al. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cells using quartz crystal microbalance [J]. Analytical Bio-chemistry, 2012, 421(1): 164-171.

[15] HUCKELHOVEN R.Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology, 2007, 45(0): 101-127.

[16] ROBERTS K. How the cell wall acquired a cellular context[J]. Plant Physiology, 2001, 125(1): 127-130.

[17] SHOWALTER A M. Structure and function of plant cell wall proteins[J]. Plant Cell, 1993, 5(1): 9-23.

[18] MOURA J C, BONINE C A, OLIVERIA V J, et al. Abiotic and biotic stresses and changes in the lignin content and composition in plants[J]. Journal of Integrative Plant Biology, 2010, 52(4): 360-376.

[19] GINDL W, GUPTA H S, SCHBERL T, et al. Mechanical properties of spruce wood cell walls by nanoindentation [J]. Materials Science and Processing, 2004, 79(8): 2069-2073.

[20] BUDIKOVA S. Structural changes and aluminium distribution in maize root tissues[J]. Plant Biology, 1999, 42(2): 259-266.

[21] SASAKI M, YAMAMOTO Y, MATSUMOTO H. Lignin deposition induced by aluminum in wheat (Triticum aestivum)roots[J]. Plant Physiology, 1996, 96(2): 193-198.

[22] 刘清泉, 陈亚华, 沈振国, 等.细胞壁在植物重金属耐性中的作用[J].植物生理学报, 2014, 50(5): 605-611.

    LIU Qingquan, CHEN Yahua, SHEN Zhenguo, et al. Roles of cell wall in plant heavy metal tolerance[J].Journal of Plant Physiology, 2014, 50(5): 605-611.

周菲, 周铁安, 潘炜松. QCM实时监测五价砷胁迫对水稻悬浮细胞粘弹性的影响[J]. 激光生物学报, 2019, 28(5): 452. ZHOU Fei, ZHOU Tiean, PAN Weisong. Real-time Monitoring of the Effect on the Viscoelasticity of Rice Suspension Cells with Arsenic(V)Stress Using QCM[J]. Acta Laser Biology Sinica, 2019, 28(5): 452.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!