红外技术, 2020, 42 (11): 1111, 网络出版: 2021-01-11  

一种高精度医学红外热像图的实现方法

Method of High Precision Medical Infrared Thermography
作者单位
1 九江学院电子工程学院,江西九江 332005
2 南昌大学医学部,江西南昌 330031
3 南昌大学九江附属医院妇科,江西九江 332000
4 九江市妇幼保健院新生儿科,江西九江 332000
5 九江学院信息科学与技术学院,江西九江 332005
摘要
医学红外热像设备测得的红外数据及转换得到的温度数据难以直接判定其所属的人体区域,常需将其转为图像数据,利用图像处理技术得到感兴趣区域并从区域内温度数据得到生物特征,实现疾病的筛查或诊断。然而,从 14位红外数据转换到 8位图像数据存在严重的数据精度损失,导致处理性能欠佳。本文提出一种新的热像图表达方法,所得到的彩色热像图含原精度的温度数据信息,且含温度观察窗设定尺度下的彩色增强效果,同时载有温度数据记录和观察窗设定规则,通过对图像数据的逆变换,可以再现原始温度数据,并可改变彩色增强效果。该方法提供的热像图无需额外存取温度数据文件,在不同的红外热像系统间具有通用性,将更符合大数据和人工智能的发展趋势。
Abstract
It is difficult to directly distinguish the human body area identified by the infrared data measured by medical infrared thermal imaging equipment from the temperature data obtained by conversion. It is often necessary to convert it into image data and use image processing technology to obtain the region of interest and the biological characteristics from the temperature data in the given area. Accordingly, disease screening or diagnosis can be realized. However, conversion from 14-bit infrared data to 8-bit image data incurs a serious loss of data accuracy, resulting in poor processing performance. In this paper, a new expression method for thermal images is proposed. The obtained color thermal image contains the original precision temperature data information and the color enhancement effect under the setting scale of the temperature observation window. At the same time, it contains the temperature data record and the setting rules of the observation window. Through the inverse transformation of the image data, the original temperature data can be reproduced and the color enhancement effect can be changed. The thermal image provided by this method can be used in different infrared thermal image systems without requiring additional access to temperature data files. This will be more aligned with the development trend of big data and artificial intelligence.
参考文献

[1] Bhowmik M K, Gogoi U R, Majumdar G, et al. Designing of Ground-Truth-Annotated DBT-TU-JU Breast Thermogram Database Toward Early Abnormality Prediction[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22: 1238-1249.

[2] De Santana M A, Pereira J M S, Da Silva F L, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines[J]. Research on Biomedical Engineering, 2018, 34: 45-53.

[3] Dua G, Mulaveesala R. Applicability of active infrared thermography for screening of human breast: a numerical study[J]. Journal of Biomedical Optics, 2018, 23: 9.

[4] Mambou S J, Maresova P, Krejcar O, et al. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model[J]. Sensors, 2018, 18: 19.

[5] Morales-Cervantes A, Kolosovas-Machuca E S, Guevara E, et al. an Automated Method for the Evaluation of Breast Cancer Using Infrared Thermography[J]. Excli Journal, 2018, 17: 989-998.

[6] Santana M A d, Pereira J M S, Silva F L d, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines[J]. Research on Biomedical Engineering, 2018, 34: 45-53.

[7] Wahab A A, Salim M I M, Yunus J, et al. Comparative evaluation of medical thermal image enhancement techniques for breast cancer detection[J]. Journal of Engineering and Technological Sciences, 2018, 50: 40-52.

[8] Abdel-Nasser M, Moreno A, Puig D. Breast Cancer Detection in Thermal Infrared Images Using Representation Learning and Texture Analysis Methods[J]. Electronics, 2019, 8: 18.

[9] Singh D, Singh A K. Role of image thermography in early breast cancer detection- Past, present and future[J]. Computer Methods and Programs in Biomedicine, 2020, 183: 61-69.

[10] Fokam D, Lehmann C. Clinical assessment of arthritic knee pain by infrared thermography[J]. Journal of basic and clinical physiology and pharmacology, 2018, 30: 21-25.

[11] Pauk J, Wasilewska A, Ihnatouski M. Infrared thermography sensor for disease activity detection in Rheumatoid arthritis patients[J]. Sensors (Switzerland), 2019, 19: 34-48.

[12] Pauk J, Ihnatouski M, Wasilewska A. Detection of inflammation from finger temperature profile in rheumatoid arthritis[J]. Medical &Biological Engineering & Computing, 2019, 57: 2629-2639.

[13] Gatt A, Mercieca C, Borg A, et al. A comparison of thermographic characteristics of the hands and wrists of rheumatoid arthritis patients and healthy controls[J]. Scientific Reports, 2019, 9: 172-180.

[14] Haq T, Crane J D, Kanji S, et al. Optimizing the methodology for measuring supraclavicular skin temperature using infrared thermography; implications for measuring brown adipose tissue activity in humans[J]. Scientific Reports, 2017, 7: 9.

[15] Jimenez-Pavon D, Corral-Perez J, Sanchez-Infantes D, et al. Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review[J]. Obesity, 2019, 27: 1932-1949.

[16] LIN P H, Echeverria A, Poi M J. Infrared thermography in the diagnosis and management of vasculitis[J]. Journal of vascular surgery cases and innovative techniques, 2017, 3: 112-114.

[17] Gauci J, Falzon O, Formosa C, et al. Automated Region Extraction from Thermal Images for Peripheral Vascular Disease Monitoring[J]. Journal of Healthcare Engineering, 2018, 2018: 14.

[18] Carriere M E, de Haas L E M, Pijpe A, et al. Validity of thermography for measuring burn wound healing potential[J]. Wound Repair and Regeneration, 2019, 10: 1-8.

[19] Knobel-Dail R B, Holditch-Davis D, Sloane R, et al. Body temperature in premature infants during the first week of life: Exploration using infrared thermal imaging[J]. Journal of Thermal Biology, 2017, 69: 118-123.

[20] Topalidou A, Ali N, Sekulic S, et al. Thermal imaging applications in neonatal care: a scoping review[J]. Bmc Pregnancy and Childbirth, 2019, 19: 14.

[21] Pereira T, Nogueira-Silva C, Simoes R. Normal range and lateral symmetry in the skin temperature profile of pregnant women[J]. Infrared Physics & Technology, 2016, 78: 84-91.

[22] Martini G, Cappella M, Culpo R, et al. Infrared thermography in children: a reliable tool for differential diagnosis of peripheral microvascular dysfunction and Raynaud's phenomenon?[J]. Pediatric Rheumatology, 2019, 17: 9.

[23] Garcia-Porta N, Gantes-Nunez F J, Tabernero J, et al. Characterization of the ocular surface temperature dynamics in glaucoma subjects using long-wave infrared thermal imaging[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2019, 36: 1015-1021.

[24] Debiec-Bak A, Wojtowicz D, Pawik L, et al. Analysis of body surface temperatures in people with Down syndrome after general rehabilitation exercise[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135: 2399-2410.

[25] Hernandez-Contreras D A, Peregrina-Barreto H, Rangel-Magdaleno J D, et al. Plantar Thermogram Database for the Study of Diabetic Foot Complications[J]. IEEE Access, 2019, 7: 161296-161307.

[26] 丁德红. 16 位高精度在线式红外热像仪的技术方案与实现 [J].红外技术, 2017, 39(9): 841-847. Dehong D. Online Temperature Measurement Technology Solutions and Implementationof 16 bit Infrared Thermal Imager[J]. Infrared Technology, 2017, 39(9): 841-847.

[27] Tan J H, Acharya U R. Pseudocolours for thermography-Multi-segments colour scale[J]. Infrared Physics & Technology, 2015, 72: 140-147.

[28] Kermani S, Samadzadehaghdam N, EtehadTavakol M. Automatic color segmentation of breast infrared images using a Gaussian mixture model[J]. Optik, 2015, 126: 3288-3294.

[29] LI T J, WANG Y Y, CHANG C, et al. Color-appearance-model based fusion of gray and pseudo-color images for medical applications[J]. Information Fusion, 2014, 19: 103-114.

高玉宝, 江涛, 胡孝成, 江琼, 杨长春, 刘泽良, 漆世锴. 一种高精度医学红外热像图的实现方法[J]. 红外技术, 2020, 42(11): 1111. GAO Yubao, JIANG Tao, HU Xiaocheng, JIANG Qiong, YANG Changchun, LIU Zeliang, QI Shikai. Method of High Precision Medical Infrared Thermography[J]. Infrared Technology, 2020, 42(11): 1111.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!