激光与光电子学进展, 2017, 54 (3): 031101, 网络出版: 2017-03-08   

傅里叶叠层显微术的照明光强校正研究 下载: 1066次

Intensity Correction Research for Fourier Ptychographic Microscopy
作者单位
1 暨南大学光电工程系, 广东 广州 510632
2 暨南大学广东省光纤传感与通信技术重点实验室, 广东 广州 510632
摘要
傅里叶叠层显微术(FPM)是一种新型的计算显微成像技术,FPM与传统显微术照明方式不同,常采用可编程LED阵列进行不同角度照明,而LED灯珠发射光强与角度有关,随角度增大光强迅速减弱,不同角度照明光强不能保证一致,导致重建图像质量下降。因此,在进行相位迭代反演计算过程中,需要对不同角度照明拍摄的图像进行光强校正。介绍了不同角度照明光强不均一的原因,通过数值模拟,探讨了对不同角度照明光强进行校正的必要性,最后给出了物理上光强校正的实验结果。
Abstract
Fourier ptychographic microscopy (FPM) is a recently developed computational microscopy. Different from the conventional microscopy, the FPM generally employs a programmable LED array as an illumination source for angular illuminations. The intensity of LED illumination is corresponding to the emitting angle. The luminous intensity decreases rapidly with the increasing of emitting angle. The illumination intensity of different angles cannot be consistent, which leads to the decline of the reconstructed image quality. Consequently, the intensity correction of low-resolution raw images is consequently needed before the iterative phase retrieval process. The reasons of the different angles of illumination intensity inhomogeneity are introduced. Numerical simulations demonstrate the necessity of the intensity correction. Finally, the experimental results of physical intensity correction are given.
参考文献

[1] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

[2] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5): 4960-4972.

[3] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.

[4] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26): 32400-32410.

[5] Bian L, Suo J, Zheng G, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 2015, 23(4): 4856-4866.

[6] Zheng G, Ou X, Horstmeyer R, et al. Characterization of spatially varying aberrations for wide field-of-view microscopy[J]. Optics Express, 2013, 21(13): 15131-15143.

[7] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.

[8] 左 超, 陈 钱, 孙佳嵩, 等. 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43(6): 0609002.

    Zuo Chao, Chen Qian, Sun Jiasong, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese J Lasers, 2016, 43(6): 0609002.

[9] 谢宗良, 马浩统, 任 戈, 等. 小孔扫描傅里叶叠层成像的关键参量研究[J]. 光学学报, 2015, 35(10): 1011002.

    Xie Zongliang, Ma Haotong, Ren Ge, et al. Research on the key parameters of aperture-scanning Fourier ptychography[J]. Acta Optica Sinica, 2015, 35(10): 1011002.

[10] Suo J, Ji X, Dai Q. An overview of computational photography[J]. Science China (Information Sciences), 2012, 55(6): 1229-1248.

[11] 徐树奎, 涂 丹, 李国辉, 等. 计算摄影综述[J]. 计算机应用研究, 2010, 27(11): 4032-4039.

    Xu Shukui, Tu Dan, Li Guohui, et al. Review of computational photography[J]. Application Research of Computers, 2010, 27(11): 4032-4039.

[12] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

[13] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

[14] Rogstad D H. A technique for measuring visibility phase with an optical interferometer in the presence of atmospheric seeing[J]. Applied Optics, 1968, 7(4): 585-588.

[15] 王海涛, 周必方. 光学综合孔径干涉成像技术[J]. 光学 精密工程, 2002, 10(5): 434-442.

    Wang Haitao, Zhou Bifang. Optical synthesis aperture interference image technology[J]. Optics and Precision Engineering, 2002, 10(5): 434-442.

[16] Goodman J W. 傅里叶光学导论[M]. 秦克诚, 刘培森, 陆家健, 等, 译. 3版. 北京: 电子工业出版社, 2011.

    Goodman J W. Introduction to Fourier optics[M]. Qin Kecheng, Liu Peisen, Lu Jiajian, et al. Transl. 3rd ed. Beijing: Publishing House of Electronics Industry, 2005.

[17] 程 鸿, 沈 川, 张 成, 等. 强度传输方程和角谱迭代融合的相位检索算法[J]. 中国激光, 2014, 41(6): 0609001.

    Cheng Hong, Shen Chuan, Zhang Cheng, et al. Phase retrieval algorithm combining transport of intensity equation and angular spectrum iterative[J]. Chinese J Lasers, 2014, 41(6): 0609001.

[18] 屠大维, 吴仍茂, 杨恒亮, 等. LED封装光学结构对光强分布的影响[J]. 光学 精密工程, 2008, 16(5): 832-838.

    Tu Dawei, Wu Rengmao, Yang Hengliang, et al. Effect of optical structure on output light intensity distribution in LED package[J]. Optics and Precision Engineering, 2008, 16(5): 832-838.

[19] 霍彦明, 吴淑梅, 潭峻廷, 等. 基于MATLAB的LED阵列的研究与仿真[J]. 应用光学, 2009, 30(2): 191-194.

    Huo Yanming, Wu Shumei, Tan Junting, et al. Distribution characteristics of LED arrays based on MATLAB[J]. Journal of Applied Optics, 2009, 30(2): 191-194.

[20] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26): 32400-32410.

杨佳琪, 马骁, 林锦新, 钟金钢. 傅里叶叠层显微术的照明光强校正研究[J]. 激光与光电子学进展, 2017, 54(3): 031101. Yang Jiaqi, Ma Xiao, Lin Jinxin, Zhong Jingang. Intensity Correction Research for Fourier Ptychographic Microscopy[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031101.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!