激光与光电子学进展, 2014, 51 (2): 020006, 网络出版: 2014-01-21   

生物细胞定量相位显微技术及相位恢复方法的新进展 下载: 2109次

New Progress on Quantitative Phase Microscopy and Phase Retrieval for Biological Cells
作者单位
1 江苏大学机械学院, 江苏 镇江 212013
2 江苏大学理学院, 江苏 镇江 212013
摘要
相位显微技术,尤其是定量相位显微技术,能够非侵入、无损伤地实现相位体形态结构成像,从而在生物细胞结构分析、类别识别和动力学行为研究中有着极其重要的应用。根据相位显微成像光路特征对相位成像技术做了分类,对典型的同轴干涉和离轴干涉两类成像技术进行了特征评析,并且介绍了这两类技术中几种重要的相位恢复方法,对三维定量相位显微技术的最新研究现状也给予了简单介绍,最后展望了相位显微技术未来的发展趋势。
Abstract
Phase microscopy, especially quantitative phase microscopy (QPM), as a non-invasive and non-destructive tool for imaging phase objects, plays an important role for the structure analysis, identification and dynamic behavior analysis of the biological cells. According to the optical path characteristics of phase microscopy imaging recorded, the typical QPM techniques in both cases of on-axis and off-axis interference are analyzed comparatively, and their several important phase retrieval methods are introduced. In addition, the latest research progress of three-dimensional (3D) QPM is given simply. At last, the trend of QPM is predicted.
参考文献

[1] 金卫凤, 王亚伟,卜 敏, 等. 生物细胞相位显微技术研究进展[J]. 激光生物学报, 2011, 20(3): 417-424.

    Jin Weifeng, Wang Yawei, Bu Min, et al.. Research progress in phase microscopy for biological cells[J]. Acta Laser Biology Sinica, 2011, 20(3): 417-424.

[2] 薛 亮, 来建成, 王绶玙, 等. 显微干涉术在血细胞光相位场定量测量中的应用[J]. 光学学报, 2010, 30(12): 3563-3567.

    Xue Liang, Lai Jiancheng, Wang Shouyu, et al.. Application of microscopic interferometry for quantitative phase measurement of red blood cells [J]. Acta Optica Sinica, 2010, 30(12): 3563-3567.

[3] 施心路. 光学显微镜及生物摄影基础教程[M]. 北京: 科学出版社, 2002. 55-67.

    Shi Xinlu. Basic Course of Optical Microsacopy and Biological Photography[M]. Beijing: Science Press, 2002. 55-67.

[4] F Zernike. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686-693.

[5] M G Nomarski. Microinterferometre differentiel a ondes polarisees[J]. J Phys (Paris), 1955, 16: S9-S13.

[6] 卜 敏, 雷海娜, 王亚伟. 生物细胞形态检测光学技术的新进展[J]. 激光与光电子学进展, 2010, 47(7): 071701.

    Bu Min, Lei Haina, Wang Yawei. New progress on detection of biological cells[J]. Laser & Optoelectronics Progress, 2010, 47(7): 071701.

[7] 马利红, 王 辉, 金洪震, 等. 数字全息显微定量相位成像的实验研究[J]. 中国激光, 2012, 39(3): 0309002.

    Ma Lihong, Wang Hui, Jin Hongzhen, et al.. Experimental study on quantitative phase imaging by digital holography microscopy[J]. Chinese J Lasers, 2012, 39(3): 0309002.

[8] D Huang, E A Swanson, C P Lin, et al.. Optical coherence tomography [J]. Science, 1991, 254 (5035): 1178-1181.

[9] I Yamaguchi, T Zhang. Phase-shifting digital holography[J]. Opt Lett, 1997, 22(16): 1268-1270.

[10] G Popescu, L P Deflores, J C Vaughan, et al.. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Opt Lett, 2004, 29(21): 2503-2505.

[11] Z Wang, L Millet, M Mir, et al.. Spatial light interference microscopy (SLIM)[J]. Opt Express, 2011, 19(2): 1016-1026.

[12] B Bhaduri, D Wickland, R Wang, et al.. Cardiomyocyte imaging using real-time spatial light interference microscopy(SLIM)[J]. PLos One, 2013, 8(2): e56930.

[13] T Nguyen, G Popescu. Spatial light interference microscopy (SLIM) using twisted-nematic liquid-crystal modulation [J]. Biomed Opt Express, 2013, 4(9): 1571-1583.

[14] B Bhaduri, K Tangella, G Popescu. Fourier phase microscopy with white light[J]. Biomed Opt Express, 2013, 4(8): 1434-1441.

[15] N T Shaked, T M Newpher, M D Ehlers, et al.. Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics [J]. Appl Opt, 2010, 49(15): 2872-2878.

[16] N Lue, W Choi, G Popescu, et al.. Quantitative phase imaging of live cells using fast Fourier phase microscopy [J]. Appl. Opt, 2007, 46(10): 1836-1842.

[17] E Cuche, F Bevilacqua, C Depeursince. Digital holography for quantitative phase-contrast imaging[J]. Opt Lett, 1999, 24(5): 291-293.

[18] P Marquet, B Rappaz, P J Magistretti, et al.. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Opt Lett, 2005, 30(5): 468-470.

[19] A Brunn, N Aspert, E Cuche, et al.. High speed 3D surface inspection with digital holograpy[C]. SPIE, 2013, 8759: 87593Q.

[20] Z Monemahghdoust, F Montfort E Cuche, et al.. Full field vertical scanning short coherence digital holographic microscope[J]. Opt Express, 2013, 21(10): 12643-12650.

[21] B Kemper, D Carl, J Schnekenburger, et al.. Investigation of living pancreas tumor cells by digital holographic microscopy[J]. J Biomed Opt, 2006, 11(3): 034005.

[22] B Kemper, A Vollmer, C E Rommel, et al.. Simplified approach for quantitative digital holographic phase contrast imaging of living cells[J]. J Biomed Opt, 2011, 16(2): 026014.

[23] B Kemper, P Langehaneberg, S Kosmeier, et al.. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis[M]. New York: Springer, 2013, Chap 6: 215-257.

[24] C J Mann, L F Yu, C M Lo, et al.. High-resolution quantitative phase-contrast microscopy by digital holography[J]. Opt Express, 2005, 13(22): 8693-8698.

[25] X Yu, M Cross, C G Liu, et al.. Measurement of the traction force of biological cells by digital holography[J]. Biomed Opt Express, 2012, 3(1): 153-159.

[26] P Ferraro, D Alferi, S D Nicola, et al.. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction[J]. Opt Lett, 2006, 31(10): 1405-1407.

[27] M Paturzo, A Finizio, P Memolo, et al.. Microscopy imaging and quantitative phase contrast mapping in turbid miocrofluidic channels by digital holography[J]. Lab Chip, 2012, 12(17): 3073-3076.

[28] T Ikeda, G Popescu, R R Dasari, et al.. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Opt Lett, 2005, 30(10): 1165-1167.

[29] G Popescu, T Ikeda, R R Dasari, et al.. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Opt Lett, 2006, 31(6): 775-778.

[30] H F Ding, E Berl, Z Wang, et al.. Fourier transform light scattering of biological structure and dynamics[J]. IEEE J Sel Top Quantum Electron, 2010, 16(4): 909-918.

[31] H V Pham, B Bhaduri, K Tangella, et al.. Real time blood testing using quantitative phase imaging[J]. PLoS One, 2013, 8(2): e55676.

[32] B Bhaduri, H Pham, M Mir, et al.. Diffraction phase microscopy with white light[J]. Opt Lett 2012, 37(6): 1094-1096.

[33] H V Pham, C Edwards, L L Goddard, et al.. Fast phase reconstruction in white light diffraction phase microscopy[J]. Appl Opt, 2013, 52(1): A97-A101.

[34] K J Chalut, W J Brown, A Wax. Quantitative phase microscopy with asynchronous digital holography[J]. Opt Express, 2007, 15(6): 3047-3052.

[35] N T Shaked, M T Rinehart, A Wax. Dual-interference-channel quantitative-phase microscopy of live cell dynamics[J]. Opt Lett, 2009, 34(6): 767-769.

[36] N T Shaked, Y Z Zhu, M T Rinehart, et al.. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Opt Express, 2009, 17(18): 15585-15591.

[37] P Gao, B L Yao, I Harder, et al.. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair[J]. J Opt Soc Am A, 2011, 28(3): 434-440.

[38] P Gao, B L Yao, J W Min, et al.. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beams plitters[J]. Opt Express, 2011, 19(3): 1930-1935.

[39] Z Wang, K Tangella, A B Tissue, et al.. Tissue refractive index as marker of disease[J]. J Biomed Opt, 2011, 16(11): 116017.

[40] B Simon, M Debailleul, V Georges, et al.. Tomographic diffractive microscopy of transparent samples[J]. Eur Phys J Appl Phys, 2008, 44(1): 29-35.

[41] F Charriere, A Marian, F Montfort, et al.. Cell refractive index tomography by digital holographic microscopy[J]. Opt Lett, 2006, 31(2): 178-180.

[42] L Yu, M K Kim. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method[J]. Opt Lett, 2005, 30(16): 2092-2094.

[43] W Choi, C F Yen, K Badizadegan, et al.. Tomographic phase microscopy[J]. Nat Methods, 2007, 4(9): 717-719.

[44] W J Choi, D I Jeon, S G Ahn, et al.. Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution[J]. Opt Express, 2010, 18(22): 23285-23295.

[45] N Lue, W Choi, G Popescu, et al.. Live cell refractometry using hilbert phase microscopy and confocal reflectance microscopy[J]. J Phys Chem A, 2009, 113(47): 13327-13330.

[46] B Rappaz, P Marquet E Cuche, et al.. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy[J]. Opt Express, 2005, 13(23): 9361-9373.

[47] X F Meng, L Z Cai, X F Xu, et al.. Two-step phase-shifting interferometry and its application in image encryption[J]. Opt Lett, 2006, 31(10): 1414-1416.

[48] M Takeda, H Ina, S Kobayashi. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. J Opt Soc Am, 1982, 72(1): 156-160.

[49] S K Debnath, Y Park. Real-time quantitative phase imaging with a spatial phase-shifting algorithm[J]. Opt Lett, 2011, 36(23): 4677-4679.

[50] B Bhaduri, G Popescu. Derivative method for phase retrieval in off-axis quantitative phase imaging[J]. Opt Lett, 2012, 37(11): 1868-1870.

[51] Y Y Xu, Y W Wang, W F Jin, et al.. A new method of phase derivative extracting for off-axis quantitative phase imaging[J]. Opt Commun, 2013, 305: 13-16.

[52] M Mitome, K Ishizuka, Y Bando. Quantitativeness of phase measurement by transport of intensity equation[J]. J Electron Microsc, 2010, 59(1): 33-41.

[53] C Zuo, Q Chen, W J Qu, et al.. Noninterferometric single-shot quantitative phase microscopy[J]. Opt Lett, 2013, 38(18): 3538-3541.

[54] A Anand, V Chhaniwal, B Javidi. Quantitative cell imaging using single beam phase retrieval method[J]. J Biomed Opt, 2011, 16(6): 060503.

[55] 王海燕. 相位恢复算法及应用研究[D]. 合肥: 安徽大学, 2011. 22-26.

    Wang Haiyan. Study on Phase Retrieval Algorithm and Its Application[D]. Hefei: Anhui University, 2011. 22-26.

[56] 徐媛媛, 王亚伟, 金卫凤, 等. 白细胞光学模型及其相位分布特征分析[J]. 中国激光, 2012, 39(5): 0504001.

    Xu Yuanyuan, Wang Yawei, Jin Weifeng, et al.. Study on phase characteristics of white blood cells and their optical models[J]. Chinese J Lasers, 2012, 39(5): 0504001.

[57] D Parshall, M K Kim. Digital holographic microscopy with dual-wavelength phase unwrapping[J]. Appl Opt, 2006, 45(3): 451-459.

[58] 王羽佳, 江竹清, 高志瑞, 等. 双波长数字全息相位解包裹方法研究[J]. 光学学报, 2012, 32(10): 1009001.

    Wang Yujia, Jiang Zhuqing, Gao Zhirui, et al.. Investigation on phase unwrapping in dual-wavelength digital holography[J]. Acta Optica Sinica, 2012, 32(10): 1009001.

[59] S Y Wang, L Xue, J C Lai, et al.. Phase retrieval method for biological samples with absorption[J]. J Opt, 2013, 15(7): 075301.

徐媛媛, 王亚伟, 金卫凤, 季颖, 张力, 张琳琳. 生物细胞定量相位显微技术及相位恢复方法的新进展[J]. 激光与光电子学进展, 2014, 51(2): 020006. Xu Yuanyuan, Wang Yawei, Jin Weifeng, Ji Ying, Zhang Li, Zhang Linlin. New Progress on Quantitative Phase Microscopy and Phase Retrieval for Biological Cells[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020006.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!