应用光学, 2019, 40 (6): 1103, 网络出版: 2020-02-11   

低温真空红外傅里叶光谱仪噪声等效辐亮度定标系统

Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment
作者单位
1 中国科学技术大学 环境科学与光电技术学院, 安徽 合肥 230026
2 昆明物理研究所, 云南 昆明 650000
3 中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031
摘要
红外傅里叶光谱的等效噪声辐亮度(NESR)是反映其对红外目标信号的极限探测能力, 也是仪器的主要技术指标。受限于我国当前的技术条件, 尚无相关能力的测试定标系统和检定规范。通过借鉴当前国内外的红外辐射计量装置的标准传递思路, 提出了一种NESR高精度测试装置方案。给出了该装置的溯源链路, 描述了其整体和光路结构, 并设计了低温真空背景抑制模块。着重介绍了宽动态范围红外积分球辐射源设计、等效光路设计和真空低温环境模块等设计方案。提出的设计方案为NESR高精度测量提供基本的参考依据, 为我国傅里叶光谱的NESR的量值溯源提供支撑条件。
Abstract
The equivalent noise radiance (NESR) of infrared Fourier spectrometer is not only a reflection of its ultimate detection ability to infrared target signal, but also a core technical index of instrument. Limited by the current technical conditions in China, there is no relevant capability of calibration system testing and specification verification yet. Based on the standard transmission method of infrared radiation metering devices at home and abroad, a scheme of NESR high-precision testing device was proposed. The traceability chain of this device was put forward, its overall structure and optical path were also described, while a suppression system with low-temperature and vacuum background was designed. This designing scheme of radiation source on infrared integrating sphere with wide dynamic range, equivalent optical path and vacuum cryogenic environment were introduced in detail. The proposed technical solution provides a basic reference for NESR high-precision measurement, which also supports the condition of NESR quantity traceability for Fourier spectrometer in China.
参考文献

[1] ASMUS V V, TIMOFEYEV Y M, POLYAKOV A V, et al. Atmospheric temperature sounding with the fourier spectrometer[J]. Izvestiya Atmospheric & Oceanic Physics, 2017, 53(4): 428-432.

[2] FRANK T G, NATASHA M J, JOSEPH A N. On the use of fourier transform infrared (FT-IR) spectroscopy and synthetic calibration spectra to quantify gas concentrations in a fischer-tropsch catalyst system[J]. Applied Spectroscopy, 2015,69(10): 1157-1169.

[3] HONNIBALL C I, CASEY I R, WRIGHT,et al. MWIR hyperspectral imaging with the MIDAS instrument[J]. Proc. of SPIE,2017 ,10177: 101770J1-8.

[4] WURST N P, JOSEPH M D, PERRY L. Measurement and modeling of longwave infrared directional downwelling spectral radiance[J]. Proc. of SPIE,2015 ,9611: 96110X1-8.

[5] SILNY J F, ZELLINGER L. Radiometric sensitivity contrast metrics for spectral remote sensors[J]. Optical Engineering, 2017, 56(8): 081807.

[6] MANNING C, GROSS M, SAMUELS A NESR. Characterization of a novel interferometer[J]. Fourier Transform Spectroscopy, 2003, 3(1): 114-116.

[7] 郑小兵. 发展光学遥感卫星辐射定标技术的几点思考[J]. 大气与环境光学学报, 2014, 9(1): 2-8.

    ZHENG Xiaobing. Some respects for development of radiometric calibration techniques for optical remote sensing satellites[J]. Journal of Atmospheric and Environmental Optics, 2014, 9(1): 2-8.

[8] MEKHONSEV S, KHROMECHENKO V, PROKHOROV A. et al. Establishing a new NIST facility for the primary realization of both spectral radiance and reflectance in the mid-and far-infrared[C]//American Geophysical Union, Fall Meeting 2009, GC43A-0793.USA: [s.n.],2009.

[9] MONTE C, GUTSCHWAGER B, MOROZOVA S P, et al. Radiation thermometry and emissivity measurements under vacuum at the PTB[J]. International Journal of Thermophysics, 2009, 30(1): 203-219.

[10] MONTE C, GUTSCHWAGER B, ADIBEKYAN A, et al. Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer[J]. Atmospheric Measurement Techniques, 2014, 7: 13-27.

[11] IVANOV V S, LISIANSKY B E, MOROZOVA S P, et al. Medium-background radiometric facility for calibration of sources or sensors[J]. Metrologia, 2000, 37(5): 599-602602.

[12] 郝小鹏, 宋健, 孙建平,等. 风云卫星的红外遥感亮度温度国家计量标准装置[J]. 光学精密工程, 2015,23(7): 1845-1851.

    HAO Xiaopeng, SONG Jian, Sun Jianping, et al. Vacuum radiance temperature national standard facility for infrared remote sensors of Chinese fengyun meteorological satellites[J]. Optics and Precision Engineering, 2015, 23(7): 1845-1851.

[13] RENTZ J H, EEGEL J R. Passive spectro-radiometer calibration: radiance responsivity, sensitivity, and radiation reference[J]. Fourier Transform Spectroscopy, 199913(1): 117-119.

[14] LI Xunniu, ZHENG Weijian, LEI Zhenggang, et al. Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer[J]. Proc. of SPIE, 2013, 8910: 89101P1-10.

[15] 郑为健, 金伟其, 苏君红.远距离被动红外遥测系统的噪声等效辐射通量密度[J]. 红外技术, 2007,29(9): 512-514.

    ZHENG Weijian, JIN Weiqi, SU Junhong. NESR of long-distance passive infrared telemetering systems[J]. Infrared Technology, 2007, 29(9): 512-514.

[16] 袁银麟, 郑小兵, 吴浩宇,等. 大口径积分球参考光源的均匀性研究[J]. 光子学报, 2015, 44(4): 0422003.

    YUAN Yinlin, ZHENG Xiaobing, WU Haoyu, et al. Uniformity research of integrating spheres reference light source with large exit aperture[J]. Acta Photonica Sinica, 2015, 44(4): 0422003.

[17] 张梦雅, 袁银麟, 翟文超,等. 宽动态范围红外积分球辐射源的设计与检测[J]. 光学学报, 2019, 39(6): 0612006.

    ZHANG Mengya, YUAN Yinlin, ZHAI Wenchao, et al. Design and test of infrared integrating sphere radiation source with wide dynamic range[J]. Acta Optica Sinica, 2019, 39(6): 0612006.

黄思佳, 夏茂鹏, 李健军, 郑小兵, 雷正刚. 低温真空红外傅里叶光谱仪噪声等效辐亮度定标系统[J]. 应用光学, 2019, 40(6): 1103. HANG Sijia, XIA Maopeng, LI Jianjun, ZHENG Xiaobing, LEI Zhenggang. Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment[J]. Journal of Applied Optics, 2019, 40(6): 1103.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!