中国激光, 2012, 39 (6): 0610002, 网络出版: 2012-05-02   

耦合型微纳光纤偏振滤光器研究

All Micro-Fiber Polarization Filter Based on Evanescent Field Coupling
作者单位
1 暨南大学光电工程系, 广东 广州 510632
2 暨南大学光电信息与传感技术广东省普通高校重点实验室, 广东 广州 510632
摘要
微纳光纤偏振滤光器是光纤通信和传感系统的微型基本元件之一。利用超模耦合理论研究表明,当选择合适的耦合区长度和微纳光纤直径时,两平行紧贴微纳光纤构成的耦合器件可实现起偏效应,即将非偏振的输入光变为偏振光输出;理论设计分析给出了产生这种效应的几何参量值。实验研究了两根微纳光纤平行耦合时输出光偏振度(DOP)与耦合长度的关系,验证了起偏效应并制作了基于消逝场耦合的微纳光纤偏振滤光器。实验表明当微纳光纤偏振滤光器输入非偏振光时,在1545~1560 nm波段耦合输出端光的偏振度达到了90%以上,实现了光束起偏;在此波段内某些波长的输出光消光比(LPER)可达到24 dB以上,而其他波长处为椭圆偏振光或者圆偏振光,实现了分色起偏。此器件与检偏器组合可制成带通(阻)波长滤波器。
Abstract
Micro fiber polarization filter is one of micro basic components for optical communication and sensors system. Theoretical analysis based on super mode theory shows that polarizing effect in coupling component of two contacted micro fibers can be achieved when the fibers′ coupling length and diameters are chose suitably, which means unpolarized light can be changed into polarized light after it is through the coupling micro fiber component. Theoretical analysis and design give the geometric parameters for the polarizing effect. Experiments are made to investigate the relationship between degree of polarization (DOP) of the output light and coupling length when two micro fibers are lined parallel to couple. Micro fiber polarization filers based on evanescent field are manufactured. Experiments show that the (DOP) of the output light within the wavelength band of 1545~1560 nm in the micro fiber polarization filers are higher than 90% when the unpolarized light is input, which means the light is polarized. The linear polarization extinction ratio (LPER) of output light at some wavelengths with the band are higher than 24 dB, while output lights at another wavelengths are elliptical or circular polarized light. It means that output lights are polarized according to their wavelengths. The micro component can construct the band-pass wavelength fiber when it is used with an optical polarizer.
参考文献

[1] Tong Limin, Lou Jingyi, Mazur Eric. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Opt. Express, 2004, 12(6): 1025~1035

[2] S. A. Harfenist, S. D. Cambron, Eric W. Nelson et al.. Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers[J]. Nano Lett., 2004, 4(10): 1931~1937

[3] Tong Limin, Gattass R. Rafael, Jonathan B. Ashcom et al.. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816~819

[4] Tong Limin, Hu Lili, Zhang Janjie et al.. Photonic nanowires directly drawn from bulk glasses[J]. Opt. Express, 2006, 14(1): 82~87

[5] Xing Xiaobo, Wang Yuqing, Li Baojun. Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate)[J]. Opt. Express, 2008, 16(14): 10815~10822

[6] Tong Limin, Lou Jingyi, R. R. Gattass et al.. Assembly of silica nanowires on silica aerogels for microphotonic devices[J]. Nano Lett., 2005, 5(2): 259~262

[7] Li Yuhang, Tong Limin. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers[J]. Opt. Lett., 2008, 33(4): 303~305

[8] Wang Yuqing, Zhu Heng, Li Baojun. Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires[J]. IEEE Photonic Technol. Lett., 2009, 21(16): 1115~1117

[9] M. Sumetsky, Y. Dulashko, J. M. Fini et al.. The microfiber loop resonator theory, experiment, and application[J]. J. Lightwave Technol., 2006, 24(1): 242~250

[10] 严英占, 吉喆, 王宝花 等. 锥形光纤倏逝场激发微球腔高Q模式[J]. 中国激光, 2010, 37(7): 1789~1793

    Yan Yingzhan, Ji Zhe, Wang Baohua et al.. Evanescent wave excitation of microsphere high-Q model using tapered fiber[J]. Chinese J. Lasers, 2010, 37(7): 1789~1793

[11] Z. Chen, V. K. S. Hsiao, X. Q. Li et al.. Optically tunable microfiber-knot resonator[J]. Opt. Express, 2011, 19(15): 14217~14222

[12] Jiang Xiaoshun, Yang Qing, Vienne Guillaume et al.. Demonstration of microfiber knot laser[J]. Appl. Phys. Lett., 2006, 89(14): 143513

[13] X. D. Jiang, Y. Chen, G. Vienne et al.. All-fiber add-drop filters based on microfiber knot resonators[J]. Opt. Lett., 2007, 32(12): 1710~1712

[14] Yu J., Feng R., She W.. Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light[J]. Opt. Express, 2009, 17(6): 4640~4645

[15] 何华龙, 冯国英, 邓国亮 等. 微纳光纤改善光束质量的研究[J]. 中国激光, 2011, 38(8): 0805008

    He Hualong, Feng Guoying, Deng Guoliang et al.. Improvement of the beam quality factor by using tapered micro/nano fiber[J]. Chinese J. Lasers, 2011, 38(8): 0805008

[16] Gu Fuxing, Zhang Lei, Yin Xuefeng et al.. Polymer single-nanowire optical sensors[J]. Nano Lett., 2008, 8(9): 2757~2761

[17] X. Guo, L. Tong. Supported microfiber loops for optical sensing[J]. Opt. Express, 2008, 16(19): 14429~14434

[18] Joel Villatoro, David Monzón-Hernández. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers[J]. Opt. Express, 2005, 13(13): 5087~5092

[19] 赵浙明, 吴平辉, 隋成华. 基于白光干涉的新型微纳光纤传感器[J]. 中国激光, 2010, 37(8): 2001~2004

    Zhao Zheming, Wu Pinghui, Sui Chenghua. A novel microfiber sensor based on white light interferometer[J]. Chinese J. Lasers, 2010, 37(8): 2001~2004

[20] She Weilong, Yu Jianhui, Feng Raohui. Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light[J]. Phys. Rev. Lett., 2008, 101(24): 243601

[21] K. Huang, S. Yang, L. Tong. Modeling of evanescent coupling between two parallel optical nanowires[J]. Appl. Opt., 2007, 46(9): 1429~1434

[22] X. B. Xing, H. Zhu, Y. Wang et al.. Ultracompact photonic coupling splitters twisted by PTT nanowires[J]. Nano Lett., 2008, 8(9): 2839~2843

[23] H. Fukuda, K. Yamada, T. Tsuchizawa et al.. Ultrasmall polarization splitter based on silicon wire waveguides[J]. Opt. Express, 2006, 14(25): 12401~12408

[24] William S. C. Chang. Fundamentals of Guided-Wave Optoelectronic Devices[M]. New York: Cambridge University Press, 2009. 52~58

杜垚, 陈哲, 余健辉, 翟艳芳, 张军, 陈春艳, 李浩智. 耦合型微纳光纤偏振滤光器研究[J]. 中国激光, 2012, 39(6): 0610002. Du Yao, Chen Zhe, Yu Jianhui, Zhai Yanfang, Zhang Jun, Chen Chunyan, Li Haozhi. All Micro-Fiber Polarization Filter Based on Evanescent Field Coupling[J]. Chinese Journal of Lasers, 2012, 39(6): 0610002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!