光学 精密工程, 2018, 26 (1): 218, 网络出版: 2018-03-14   

卫星与地基闪电探测资料在闪电活动研究中的综合应用

Combined application of lightning detection data from satellite and ground-based observations
惠雯 1,2,*黄富祥 1郭强 1
作者单位
1 国家卫星气象中心, 北京 100081
2 高原大气与环境四川省重点实验室, 四川 成都 610225
摘要
利用闪电探测资料研究闪电放电特性及其活动特征, 对于雷电灾害的监测和预警具有重要意义。卫星闪电探测不受下垫面条件限制, 可观测覆盖区域内的总闪电, 但无法区分云闪与地闪, 地基闪电探测以定位地闪为主, 且二者探测原理不同。本文分析了卫星与地基闪电探测在观测目标、定位精度和探测率等方面的差异; 在此基础上, 利用卫星闪电成像仪TRMM LIS与我国国家雷电监测网资料, 提出一种结合星地同步闪电观测数据的闪电活动分析方法, 该方法对两种资料中时空特性较为相近的探测单元进行匹配处理, 通过聚类算法得到闪电信息; 利用该方法分析了我国西南地区2008~2014年的闪电分布特征。结果表明: 该方法可有效获得观测区域的闪电信息, 且从气候与地形因素等方面可对分析结果给予解释; 下一步结合静止卫星闪电探测资料, 可从数据匹配误差上获得改进, 同时可将多源闪电观测资料结合的方法扩展到更多应用。
Abstract
Research on the lightning activities by taking advantage of the lighting detection data from satellite and ground-based observations is of great importance for lightning monitoring and early warning for thunderstorm. A satellite-based lightning imager can detect lightning signals over both ocean and land areas, and provide total lightning data including intracloud and cloud-to-ground lightning. However, a ground-based lighting location system usually gets the cloud-to-ground lightning. The two ways detect optical and radiometric emissions from lightning respectively. Firstly, the differences between satellite and ground-based lightning detection were analyzed in the aspects of the observed objective, location accuracy, and detection efficiency. Secondly, based on the data of TRMM LIS and the ground-based lightning detection network over China, a method for combination of satellite and ground-based lightning detection data was proposed. More specifically, by matching the similar units from both kinds of data and clustering the lightning groups, the combined lighting flashes could be extracted. Finally, the method was used in analyzing the lightning activities in southwest China from 2008 to 2014. The results show that the proposed method is feasible from the perspective of climatic and topography factors. In future, by integrating the data of geostationary satellite-based lightning imager, the matching error can be decreased, and the improved method will be applied to more solutions.
参考文献

[1] FINKE U, KREYER O. Detect and locate lightning events from geostationary satellite observations, report part I: Review of existing lightning location systems[R]. Technical Report EUM/CO/02/1016/SAT, 2002.

[2] GOODMAN S J, BLAKESLEE R, KOSHAK W J, et al.. The geostationary lightning mapper (GLM) for GOES-R: A new operational capability to improve storm forecasts and warnings[C]. Proc. AMS 6th Annual Symposium on Future National Operational Enviro nmental Satellite Systems-NPOESS and GOES-R, American Meteorological Society, 2010.

[3] 王道洪, 郄秀书, 郭昌明. 雷电与人工引雷 [M]. 上海: 上海交通大学出版社, 2000: 207-217.

    WANGD H, QIE X SH, GUO CH M. Lightning and Artificial Lead Mine [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 207-217. (in Chinese)

[4] 张广庶, 王彦辉, 郄秀书, 等. 基于时差法三维定位系统对闪电放电过程的观测研究 [J]. 中国科学: 地球科学, 2010, 40(4): 523-534.

    ZHANG G SH, WANG Y H, QIE X SH, et al.. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes [J]. Science China Earth Sciences, 2010, 53(4): 591-602. (in Chinese)

[5] CUMMINS K L, MURPHY M J, BARDO E A, et al.. A combined TOA/MDF technology upgrade of the U.S. national lightning detection network [J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D8): 9035-9044.

[6] BIAGI C J, CUMMINS K L, KEHOE K E, et al.. National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003-2004 [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D5): D05208.

[7] DOWDEN R L, HOLZWORTH R H, RODGER C J, et al.. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide [J]. IEEE Antennas and Propagation Magazine, 2008, 50(5): 40-60.

[8] RICHARD P, DELANNOY A, LABAUNE G, et al.. Results of spatial and temporal characterization of the VHF-UHF radiation of lightning [J]. Journal of Geophysical Research: Atmospheres, 1986, 91(D1): 1248-1260.

[9] BETZ H D, SCHMIDT K, LAROCHE P, et al.. LINET-An international lightning detection network in Europe [J]. Atmospheric Research, 2009, 91(2-4): 564-573.

[10] QIEX SH, YAN M H, GUO CH M, et al.. Lightning data and study of thunderstorm nowcasting [J]. Acta Meteorologica Sinica, 1993, 7(2): 244-256.

[11] ALBRECHT R I, GOODMAN S J, BUECHLER D E, et al.. Where are the lightning hotspots on Earth [J]. Bulletin of the American Meteorological Society, 2016, 97(11): 2051-2068.

[12] HERMAN J R, CARUSO J A, STONE R G. Radio Astronomy Explorer (RAE)-I. Observations of terrestrial radio noise [J]. Planetary and Space Science, 1973, 21(3): 443-461.

[13] CHRISTIAN H J, FROST R L, GILLASPY P H, et al.. Observations of optical lighting emissions from above thunderstorms using U-2 aircraft [J]. Bulletin of the American Meteorological Society, 1983, 64(2): 120-123.

[14] BROOK M, RHODES C, VAUGHAN JR O H, et al.. Nighttime observations of thunderstorm electrical activity from a high altitude airplane [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1985, 90(D4): 6111-6120.

[15] CHRISTIAN H J, BLAKESLEE R J, BOCCIPPIO D J, et al.. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2003, 108(D1): ACL 4-1-ACL 4-15.

[16] BOCCIPPIO D J, KOSHAK W, BLAKESLEE R, et al.. The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation [J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(4): 441-458.

[17] CHRISTIAN H J, BLAKESLEE R J, GOODMAN S J, et al.. Algorithm theoretical basis document (ATBD) for the lightning imaging sensor (LIS)[R]. Technical Report, Washington: NASA, 2000.

[18] WOLFE W L, NAGLER M. Conceptual design of a spaceborne lightning sensor [J]. SPIE, 1980, 246: 22-23.

[19] CHRISTIAN H J, BLAKESLEE R J, GOODMAN S J. The detection of lightning from geostationary orbit [J].Journal of Geophysical Research: Atmospheres (1984-2012), 1989, 94(D11): 13329-13337.

[20] 陈圣波, 杨莹, 崔腾飞. 静止卫星闪电探测中云影响研究 [J]. 地球物理学报, 2012, 55(3): 797-803.

    CHEN SH B, YANG Y, CUI T F. Study of the cloud effect on lightning detection by geostationary satellite [J]. Chinese Journal of Geophysics, 2012, 55(3): 797-803. (in Chinese)

[21] CHAUZY S, COQUILLAT S, SOULA S. On the relevance of lightning imagery from geostationary satellite observation for operational meteorological applications[R]. Technical Report EUM/COL/LET/02/1562, 2002.

[22] 黄富祥. FY-4卫星闪电成像仪的使命和挑战 [J]. 气象科技, 2007, 35(Z1): 35-42.

    HUANG F X. Lightning imaging sensor on FY-4 meteorological satellite: mission and challenge [J].Meteorological Science and Technology, 2007, 35(Z1): 35-42. (in Chinese)

[23] GOODMAN S J, BLAKESLEE R J, KOSHAK W. Geostationary Lightning Mapper for GOES-R and beyond[C]. Proceedings of the 88th AMS Annual Meeting, NASA, 2008.

[24] GOODMAN S J, BLAKESLEE R J, KOSHAK W J, et al.. The GOES-R Geostationary Lightning Mapper (GLM) [J]. Atmospheric Research, 2013, 125-126: 34-49.

[25] 周严, 田茂, 张青林, 等. 气象卫星闪电识别系统的设计与实现 [J]. 光学 精密工程, 2012, 20(7): 1587-1594.

    ZHOU Y, TIAN M, ZHANG Q L, et al.. Design and implementation of lightning identification system on meteorological satellite [J]. Opt. Precision Eng., 2012, 20(7): 1587-1594. (in Chinese)

[26] 鲍书龙, 唐绍凡, 李云飞, 等. 静止轨道瞬态点源多目标闪电信号实时探测技术 [J]. 红外与激光工程, 2012, 41(9): 2390-2395.

    BAO SH L, TANG SH F, LI Y F, et al.. Real-time detection technology of instantaneous point-source multi-target lightning signal on the geostationary orbit [J]. Infrared and Laser Engineering, 2012, 41(9): 2390-2395. (in Chinese)

[27] GRANDELL J, FINKE U, STUHLMANN R. The EUMETSAT Meteosat Third Generation Lightning Imager (MTG-LI): Applications and product processing[C]. Proceedings of the 9th EMS Annual Meeting, EMS, 2009.

[28] BOCCIPPIO D J, CUMMINS K L, CHRISTIAN H J, et al.. Combined satellite-and surface-based estimation of the intracloud cloud-to-ground lightning ratio over the continental United States [J]. Monthly Weather Review, 2001, 129(1): 108-122.

[29] 王宇, 郄秀书, 王东方, 等. 北京闪电综合探测网(BLNET): 网络构成与初步定位结果 [J]. 大气科学, 2015, 39(3): 571-582.

    WANG Y, QIE X SH, WANG D F, et al.. Beijing Lightning NETwork (BLNET): Configuration and preliminary results of lightning location [J]. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 571-582. (in Chinese)

[30] 王娟, 谌芸. 2009—2012年中国闪电分布特征分析 [J]. 气象, 2015, 41(2): 160-170.

    WANG J, CHEN Y. Analysis of the 2009—2012 lightning distribution characteristics in China [J].Meteorological Monthly, 2015, 41(2): 160-170. (in Chinese)

[31] CHRISTIAN JR H J. Global lightning activity[C]. Proceedings of the AMS Annual Meeting, AMS, 2005.

[32] 郄秀书, 周筠君, 袁铁. 卫星观测到的全球闪电活动及其地域差异 [J]. 地球物理学报, 2003, 46(6): 743-750, 885.

    QIE X SH, ZHOU Y J, YUAN T. Global lightning activities and their regional differences observed from the satellite [J]. Chinese Journal of Geophysics, 2003, 46(6): 743-750, 885. (in Chinese)

[33] 朱润鹏, 袁铁, 李万莉, 等. 基于卫星观测资料的全球闪电活动特征研究 [J]. 气候与环境研究, 2013, 18(5): 639-650.

    ZHU R P, YUAN T, LI W L, et al.. Characteristics of global lightning activities based on satellite observations [J]. Climatic and Enviro nmental Research, 2013, 18(5): 639-650. (in Chinese)

[34] BOCCIPPIO D J, KOSHAK W J, BLAKESLEE R J. Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability [J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9): 1318-1332.

[35] BEIRLE S, KOSHAK W, BLAKESLEE R, et al.. Global patterns of lightning properties derived by OTD and LIS [J]. Natural Hazards and Earth System Science, 2014, 14(10): 2715-2726.

[36] 袁铁, 郄秀书. 基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究 [J]. 大气科学, 2010, 34(1): 58-70.

    YUAN T, QIE X SH. TRMM-based study of lightning activity and its relationship with precipitation structure of a squall line in South China [J]. Chinese Journal of Atmospheric Sciences, 2010, 34(1): 58-70. (in Chinese)

[37] 马明, 陶善昌, 祝宝友, 等. 全球闪电活动对气温变化的响应 [J]. 科学通报, 2006, 50(15): 1643-1647.

    MA M, TAO SH CH, ZHU B Y, et al.. Response of global lightning activity to air temperature variation [J]. Chinese Science Bulletin, 2005, 50(22): 2640-2644. (in Chinese)

[38] 郄秀书, 刘冬霞, 孙竹玲. 闪电气象学研究进展 [J]. 气象学报, 2014, 72(5): 1054-1068.

    QIE X SH, LIU D X, SUN ZH L. Recent advances in research of lightning meteorology [J]. Acta Meteorologica Sinica, 2014, 72(5): 1054-1068. (in Chinese)

[39] GOODMAN S J, CHRISTIAN H J, RUST W D. A comparison of the optical pulse characteristics of intracloud and cloud-to-ground lightning as observed above clouds [J].Journal of Applied Meteorology, 1988, 27(12): 1369-1381.

[40] CHRISTIAN H J, GOODMAN S J. Optical observations of lightning from a high-altitude airplane [J].Journal of Atmospheric and Oceanic Technology, 1987, 4(4): 701-711.

[41] 邵晶, 马冬梅, 聂真威. 光学成像系统光学波前的高精度测试 [J]. 光学 精密工程, 2011, 19(11): 2582-2588.

    SHAO J, MA D M, NIE ZH W.Accurate test of optical wave front for optical imaging system [J]. Opt. Precision Eng., 2011, 19(11): 2582-2588. (in Chinese)

[42] BOCCIPPIO D J, DRISCOLL K, HALL J, et al.. LIS/OTD Software Guide[R]. Huntsville: Global Hydrology and Climate Center, 1998.

[43] 韩心志. 静止卫星闪电测绘仪设计特点研讨 [J]. 红外, 2011, 32(3): 4-9.

    HAN X ZH. Discussion on design features of lightning mapper for geostationary satellite [J]. Infrared, 2011, 32(3): 4-9. (in Chinese)

[44] KALLURI S, GURKA J, RACE R. Improved observations of Earth and space weather from GOES-R [J]. SPIE, 2009, 7456: 74560M.

[45] BOCCIPPIO D J, DRISCOLL K, KOSHAK W, et al.. Cross-sensor validation of the Optical Transient Detector (OTD) [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60(7-9): 701-712.

[46] USHIO T, HECKMAN S, DRISCOLL K, et al.. Cross-sensor comparison of the Lightning Imaging Sensor (LIS) [J]. International Journal of Remote Sensing, 2002, 23(13): 2703-2712.

[47] THOMAS R J, KREHBIEL P R, RISON W, et al.. Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma [J]. Geophysical Research Letters, 2000, 27(12): 1703-1706.

[48] THOMPSON K B, BATEMAN M G, CAREY L D. A comparison of two ground-based lightning detection networks against the satellite-based Lightning Imaging Sensor (LIS) [J].Journal of Atmospheric and Oceanic Technology, 2014, 31(10): 2191-2205.

[49] SLOOP C, LIU C, HECKMAN S. Analysis of earth networks total lightning detection efficiency versus LIS for 2011 through 2013 in North America [C]. Proceedings of the 18th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, American Meteorological Society, 2014.

[50] LIU CH L, HECKMAN S. The application of total lightning detection and cell tracking for severe weather prediction [C]. Proceedings of the WMO Technical Conference on Instruments and Methods of Observation, 2010.

[51] FINKE U, KREYER O. Detect and locate lightning events from geostationary satellite observations, report part I: Review of existing lightning location systems [R]. Technical Report EUM/CO/02/1016/SAT, 2002.

[52] 马明, 陶善昌, 祝宝友, 等. 卫星观测的中国及周边地区闪电密度的气候分布 [J]. 中国科学: D辑, 2004, 34(4): 298-306.

    MA M, TAO SH CH, ZHU B Y, et al.. Climatological distribution of lightning density observed by satellites in China and its circumjacent regions [J]. Science in China Series D: Earth Sciences, 2005, 48(2): 219-229.(in Chinese)

[53] RUDLOSKY S D. Evaluating ground-based lightning detection networks using TRMM/LIS observations[C]. Proceedings of the 7th Conference on the Meteorological Applications of Lightning Data, American Meteorological Society, 2015.

[54] RICHARD P, RICHARD O, RONALD H. The National Lightning Detection Network-severe storm observations[C]. Proceedings of the 16th Conference on Severe Local Storms and Conference on Atmospheric Electricity, 1990.

[55] SOULA S, SEITY Y, FERAL L, et al.. Cloud-to-ground lightning activity in hail-bearing storms [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D2): D02101.

[56] 周筠珺, 孙凌, 杨静, 等. 中国西南及其周边地区雷电活动的特征分析 [J]. 高电压技术, 2009, 35(6): 1309-1315.

    ZHOU Y J, SUN L, YANG J, et al.. Characteristics of lightning activities over southwest and its circumjacent areas in China [J]. High Voltage Engineering, 2009, 35(6): 1309-1315. (in Chinese)

[57] 王义耕, 刘洁, 王介君, 等. 卫星观测的西南地区闪电的时空分布 [J]. 大气科学学报, 2010, 33(4): 489-495.

    WANG Y G, LIU J, WANG J J, et al.. Temporal and spatial distributions of lightning activity in southwest China based on satellite observations [J]. Transactions of Atmospheric Sciences, 2010, 33(4): 489-495. (in Chinese)

[58] 李家启, 申双和, 夏佰成, 等. 基于ADTD系统的闪电频次分布特征分析 [J]. 热带气象学报, 2011, 27(5): 710-716.

    LI J Q, SHEN SH H, XIA B CH, et al.. Analysis of lightning frequency distribution characteristics based on ADTD system [J]. Journal of Tropical Meteorology, 2011, 27(5): 710-716. (in Chinese)

[59] 郄秀书, 袁铁, 谢毅然, 等. 青藏高原闪电活动的时空分布特征 [J]. 地球物理学报, 2004, 47(6): 997-1002.

    QIE X SH, YUAN T, XIE Y R, et al.. Spatial and temporal distribution of lightning activities over the Tibetan Plateau [J]. Chinese Journal of Geophysics, 2004, 47(6): 997-1002. (in Chinese)

[60] 齐鹏程, 郑栋, 张义军, 等. 青藏高原闪电和降水气候特征及时空对应关系 [J]. 应用气象学报, 2016, 27(4): 488-497.

    QI P CH, ZHENG D, ZHANG Y J, et al.. Climatological characteristics and spatio-temporal correspondence of lightning and precipitation over the Tibetan Plateau [J]. Journal of Applied Meteorological Science, 2016, 27(4): 488-497. (in Chinese)

[61] 张顺龙, 库涛, 周浩. 针对多聚类中心大数据集的加速K-means聚类算法 [J]. 计算机应用研究, 2016, 33(2): 413-416.

    ZHANG SH L, KU T, ZHOU H. Accelerate K-means for multi-center clustering of big datasets [J].Application Research of Computers, 2016, 33(2): 413-416. (in Chinese)

惠雯, 黄富祥, 郭强. 卫星与地基闪电探测资料在闪电活动研究中的综合应用[J]. 光学 精密工程, 2018, 26(1): 218. HUI Wen, HUANG Fu-xiang, GUO Qiang. Combined application of lightning detection data from satellite and ground-based observations[J]. Optics and Precision Engineering, 2018, 26(1): 218.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!