红外与激光工程, 2018, 47 (11): 1105006, 网络出版: 2019-01-10  

冷气流引射式小型DF激光器紧凑度分析

Compactness analysis of small scale DF laser with cooling gas ejector
作者单位
摘要
对影响冷气流引射式小型DF激光器紧凑度的主要因素进行了分析, 以功率-气源体积比作为评价紧凑度的指标, 在多种参数条件下对功率-气源体积比进行了计算, 结果表明, 随着激光器喷管列阵质量流面密度的增加, 功率-气源体积比先增大后减小, 并在喷管列阵质量流面密度约为3.3 g·s-1·cm-2时取得最大值; 在激光尾气参数相同的情况下, 提高引射喷管总压可获得更大的功率- 气源体积比, 但随着引射喷管总压的提高, 引射喷管总压对功率-气源体积比的影响逐渐减弱; 与氦气做引射工质相比, 采用氮气和空气做引射工质可获得更大的功率-气源体积比。
Abstract
Influence factors of compactness of DF laser with cooling gas ejector were analyzed. Ratio of Laser Power to Gas Source Volume(RPGV) was chosen as DF laser compactness evaluation index and was calculated at different conditions. According to the result, RPGV increases at first, and then decreases with increasing nozzle array mass flux. RPGV gets maximum value when nozzle array mass flux is about 3.3 g·s-1·cm-2. In the case of same laser effluent parameters, increasing ejector driving gas total pressure leads to a bigger RPGV, but its effect on RPGV gradually becomes weak. Compared with helium as ejector driving gas, adopting nitrogen and air as ejector driving gas leads to higher RPGV.
参考文献

[1] Gross R W F, Bott J F. Handbook of Chemical Lasers [M]. Beijing: Science Press, 1987. (in Chinese)

[2] Acebal R, Marietta G A. Multi-stage steam ejector methodology: model development and application to high energy lasers[C]//18th Fluid Dynamics and Plasma Dynamics and Lasers Conference, AIAA, 1985: 1601.

[3] Emmanuel G. Optimum performance for a single stage gaseous ejector[J]. AIAA Journal, 1976, 14(9): 1292-1296.

[4] Ortwerth P J. On the rational design of compressible flow ejectors[C]//11th Fluid Dynamics and Plasma Dynamics Conference, AIAA, 1978: 1217.

[5] 唐力铁, 于志闯, 赵乐至, 等. DF/HF化学激光器喷管总压损失的数值模拟[J]. 红外与激光工程, 2013, 42(5): 1194-1197.

    Tang Litie, Yu Zhichuang, Zhao Lezhi, et al. Total pressure losing of nozzles flow in DF/HF chemical laser by numerical simulation[J]. Infrared and Laser Engineering, 2013, 42(5): 1194-1197. (in Chinses)

[6] 唐力铁, 李艳娜, 赵乐至. 燃烧驱动CW DF/HF化学激光器总压损失的一维气体动力学理论分析[J]. 红外与激光工程, 2016, 45(7): 0705001.

    Tang Litie, Li Yanna, Zhao Lezhi. Theoretical analysis of one dimensional gas dynamics of total pressure losses for combustion-driven continuous wave DF/HF chemical lasers[J]. Infrared and Laser Engineering, 2016, 45(7): 0705001. (in Chinese)

[7] 徐万武. 高性能、大压缩比化学激光器压力恢复系统研究[D]. 长沙: 国防科学技术大学, 2003.

    Xu Wanwu. Study of high performance, high compression ratio pressure recovery system for chemical laser[D]. Changsha: National University of Defense Technology, 2003. (in Chinese)

[8] 邱雄飞, 刘盛田, 郭建增, 等. 利用高翅管换热器提高压力恢复系统效率[J]. 强激光与粒子束, 2014, 26(9): 091011.

    Qiu Xiongfei, Liu Shengtian, Guo Jianzeng, et al. Improving the efficiency of pressure recovery system by high-fin tube heat exchanger[J]. High Power Laser and Particle Beams, 2014, 26(9): 091011. (in Chinses)

[9] 廖达雄, 任泽斌, 余永生, 等. 等压混合引射器设计与实验研究[J]. 强激光与粒子束, 2006, 18(5): 728-732.

    Liao Daxiong, Ren Zebin, Yu Yongsheng, et al. Design and experiment of constant-pressure mixing ejector[J]. High Power Laser and Particle Beams, 2006, 18(5): 728-732. (in Chinese)

[10] 童景山. 流体热物性学-基本理论与计算[M]. 北京: 中国石化出版社, 2008.

    Tong Jingshan. Fluid Thermodynamics-Basic Theory and Calculation[M]. Beijing: China Petrochemical Press, 2008. (in Chinese)

郭建增, 邱雄飞, 王杰, 刘盛田, 颜飞雪, 王植杰. 冷气流引射式小型DF激光器紧凑度分析[J]. 红外与激光工程, 2018, 47(11): 1105006. Guo Jianzeng, Qiu Xiongfei, Wang Jie, Liu Shengtian, Yan Feixue, Wang Zhijie. Compactness analysis of small scale DF laser with cooling gas ejector[J]. Infrared and Laser Engineering, 2018, 47(11): 1105006.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!