光子学报, 2018, 47 (11): 1101001, 网络出版: 2018-12-17  

南海北部区域海洋水体皮温-体温模型研究

Study on Model of the Sea Surface Skin Temperature and Bulk Sea Surface Temperature in Northern Region of South China Sea
作者单位
1 西安电子科技大学 机电工程学院, 西安 710071
2 中国科学院西安光学精密机械研究所, 西安 710119
3 中国科学院大学, 北京 100049
4 国家卫星海洋应用中心, 北京 100081
摘要
针对我国海洋遥感定标检验技术, 提出海洋水体皮温-体温模型, 将海洋皮温测量精度提高至0.3℃.模型皮温数据来源于自主研制架设在南海北部PY-301石油平台上的无人值守自动多波段红外辐射系统, 通过标准黑体标定、光阑校正、天空光校正, 使海水皮温测量精度优于±0.5℃.基于模型分析了风速对海洋皮温和体温差值的影响, 并用所提模型与Donlon模型对海洋皮温测量值进行风速修正, 修正后两者偏差分别为-0.007 6±0.297 1℃和0.044 6±0.324 8℃.结果证明该模型有效且能够提高海洋皮温的测量精度.
Abstract
For the research of marine remote sensing calibration of China, a mathematical model of bulk-skin sea surface temperature is proposed to improve the measurement precision of skin sea surface temperature to 0.3℃. Skin sea surface temperature is measured by the self-designed automatic multi-spectral infrared radiometer system installed on the PY-301 oil platform in the northern part of the South China Sea, the measurement accuracy of the radiometer is better than±0.5 ℃ through standard blackbody calibration, pupil correction and skylight correction. The effect of wind speed on the bulk-skin sea surface temperature is analyzed based on the model, the skin sea surface temperature is corrected by the proposed model and Donlon model, the biases of corrected results are -0.007 6±0.297 1℃ and 0.044 6±0.324 8℃, respectively. Results prove that the proposed model is effective and can improve the measurement accuracy of skin sea surface temperature.
参考文献

[1] MINNETT P J, KNUTESON R O, BEST F A, et al. The marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer[J]. Journal of Atmospheric and Oceanic Technology, 2001,18(6): 994-1013.

[2] JESSUP A T, BRANCH R. Integrated ocean skin and bulk temperature measurements using the calibrated infrared in situ measurement system (CIRIMS) and through-hull ports[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(4): 579-597.

[3] DONLON C, ROBINSON I S, WIMMER W, et al. An infrared sea surface temperature autonomous radiometer (ISAR) for deployment aboard volunteer observing ships (VOS)[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(1): 93-113.

[4] 张建,屈恩世,曹剑中,等.自动多波段红外海洋表面温度辐射系统研究[J].光学学报, 2012, 32(4): 0401003.

    ZHANG Jian, QU En-shi, CAO Jian-zhong, et al. Study on a multi-spectral band infrared sea surface temperature radiometer system[J]. Acta Optica Sinica, 2012, 32 (4): 0401003.

[5] DITRI A L, MINNETT P J, LIU Yang, et al. The accuracies of Himawari-8 and MTSAT-2 sea-surface temperatures in the tropical western pacific ocean[J]. Remote Sensing, 2018,10(2): 1-20.

[6] ALAPPATTU D P, WANG Qing, YAMAGUCHI R, et al. A study on bulk and skin temperature difference using observations from Atlantic and Pacific Coastal regions of United States[C]. SPIE Defense+Security, 2017: 101860M.

[7] HAO Yan-ling, CUI Ting-wei, SINGH V P, et al. Validation of MODIS sea surface temperature product in the coastal waters of the Yellow sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(5): 1667-1680.

[8] YANG Ming-lun, GUAN Lei, ZHANG Kai-lin, et al. Effect of emissivity on shipboard sea surface skin temperature measurements[C].Geoscience and Remote Sensing Symposium. IEEE, 2016: 4653-4656.

[9] ZLICKE C, HAGEN E. Impact of the skin effect on the near-surface temperature profile[J]. Physics and Chemistry of the Earth, 1998,23(5-6): 531.

[10] DONLON C J, MINNETT P J, GENTEMANN C, et al. Toward improved validation of satellite sea surface skin temperature measurements for climate research[J]. Journal of Climate, 2002, 15(4): 353-369.

[11] CHECHIN D, REPINA I,STEPANENKO V. Numerical modeling of the influence of cool skin on the heat balance and thermal regime of a water body[J]. Izvestiya Atmospheric and Oceanic Physics, 2010,46(4): 499-510.

[12] MINNETT P J, SMITH M,WARD B. Measurements of the oceanic thermal skin effect[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011,58(6): 861-868.

[13] DONLON C J, NIGHTINGALE T J, SHEASBY T, et al. Implications of the oceanic thermal skin temperature deviation at high wind speed[J]. Geophysical Research Letters, 1999,26(16): 2505-2508.

[14] HANAFIN J A, MINNETT P J. Measurements of the infrared emissivity of a wind-roughened sea surface[J]. Applied Optics, 2005,44(3): 398-411.

[15] MASUDA K, TAKASHIMA T, TAKAYAMA Y. Emissivity of pure and sea waters for the model sea surface in the infrared window regions[J]. Remote Sensing of Environment, 1988,24(2): 313-329.

[16] 施加宝, 吴振森, 曹运华, 等. 海面中波红外反射率特性研究 [J].光子学报, 2009,38(9): 2372-2375.

    SHI Jia-bao, WU Zhen-sen, CAO Yun-hua, et al. Study on reflection of sea surface in mid-IR[J]. Acta Optica Sinica, 2009, 38(9): 2372-2375.

[17] SHAW J, MARSTON C. Polarized infrared emissivity for a rough water surface[J]. Optics Express, 2000, 7(11): 375-380.

[18] WATTS P D, ALLEN M R, NIGHTINGALE T J. Wind speed effects on sea surface emission and reflection for the along track scanning radiometer [J]. Journal of Atmospheric and Oceanic Technology, 1996,13(1): 126-141.

[19] NICLLS R, CASELLES V, VALOR E, et al. A simple equation for determining sea surface emissivity in the 3~15 μm region[J]. International Journal of Remote Sensing, 2009,30(6): 1603-1619.

张建, 郝三峰, 宋庆君, 赵俍骁, 安飞. 南海北部区域海洋水体皮温-体温模型研究[J]. 光子学报, 2018, 47(11): 1101001. ZHANG Jian, HAO San-feng, SONG Qing-jun, ZHAO Liang-xiao, AN Fei. Study on Model of the Sea Surface Skin Temperature and Bulk Sea Surface Temperature in Northern Region of South China Sea[J]. ACTA PHOTONICA SINICA, 2018, 47(11): 1101001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!