红外技术, 2019, 41 (8): 699, 网络出版: 2019-10-12   

含有双层衍射光学元件的红外双波段无热化光学系统的设计

Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements
作者单位
盐城师范学院新能源与电子工程学院, 江苏盐城 224007
摘要
建立了工作在一定入射角度范围内的多层衍射光学元件的复合带宽积分平均衍射效率的分析模型。基于衍射光学元件所具有的独特的消色差和消热差性质, 设计了一个含有双层衍射光学元件的工作在 3.7~4.8 .m和 7.7~9.5 .m红外双波段光学系统。光学系统的焦距为 100 mm, F#为 2, 采用像元数为 640×512、间距为 15 .m的制冷型探测器。该系统在空间频率 33 lp/mm时, 中、长波红外 MTF分别高于 0.52和 0.16, 最大 RMS半径小于 9.88 .m, 波前像差小于 0.0705., 最大离焦量小于焦深, 在-40℃~71℃范围内实现了无热化设计。系统中采用的双层衍射光学元件在红外双波段的带宽积分平均衍射效率高于 99.15%。入射到衍射面上的角度为 0°~10°, 该双层衍射光学元件在中波和长波波段的复合带宽积分平均衍射效率分别为 97.70%和 96.95%。
Abstract
The analysis model of comprehensive bandwidth integrated average diffraction efficiency of multilayer diffractive optical elements (MLDOEs) operating within a range of incident angle was established. Based on the special characteristics of achromatism and athermalization of diffractive optical elements (DOEs), an infrared dual-band optical system with double-layer DOEs operating in the range of 3.7–4.8 .m and 7.7-9.5 .m wavebands was designed. The effective focal length of the optical system is 88 mm; F # is 2; the cooled focal plane array is 640.512, and the pixel pitch is 15 .m. MTF of the designed system were above 0.52 and 0.16 for the MWIR and LWIR, respectively, at a spatial frequency of 33 lp/mm, the maximal RMS radius was less than 9.88 .m, the wavefront error was smaller than 0.0705. and the maximal defocus was less than focus depth, and therefore, the designed optical system realized athermalization over the temperature range from .40℃ to 71℃. The bandwidth-integrated average diffraction efficiency of double-layer DOEs adopted by the proposed system for the two wavebands was more than 99.15%. The incident angle on the diffractive surface was within the range of 0°–10°, the overall bandwidth-integrated average diffraction efficiency of the double-layer DOEs were 97.70% and 96.95% for the MWIR and LWIR wavebands, respectively.
参考文献

[1] Michael D Missig, Michael Morris G. Diffractive optics applied to eyepiece design[J]. Appl. Opt., 1995, 34(14): 2452-2461.

[2] Andrew P Wood, Philip J Rogers. Diffractive optics in modern optical engineering[J]. Proc. of SPIE, 2005, 5865: 83-97.

[3] 崔庆丰. 折衍混合成像光学系统设计 [J].红外与激光工程 , 2006, 35(1): 12-16. CUI Qingfeng. Design of hybrid diffractive-refractive imaging optical systems[J]. Infrared and Laser Engineering, 2006, 35(1): 12-16.

[4] 裴雪丹 , 崔庆丰 , 冷家开 . 入射角对双层衍射光学元件衍射效率的影响[J].光学学报 , 2009, 29(1): 120-125. PEI Xuedan, CUI Qingfeng, LENG Jiakai. Effect of incident angle on diffraction efficiency of a two-layer diffractive optical element[J]. Acta Optica Sinica, 2009, 29(1): 120-125.

[5] 薛常喜 , 崔庆丰 , 潘春艳 , 等. 基于带宽积分平均衍射效率的多层衍射光学元件设计[J].光学学报 , 2010, 30(10): 3016-3020. XUE Changxi, CUI Qingfeng, PAN Chunyan, et al. Design of multi-layer diffractive optical element with bandwidth integral average diffraction efficiency[J]. Acta Optica Sinica, 2010, 30(10): 3016-3020.

[6] Hideaki Ogawa, Takehiko Nakai. The folded optical element of the accumulated layer[J]. Photo Industry, 2000, 58(12): 72-76.

[7] JIANG Yanru, WANG Jing, XIE Qingkun, et al. Athermal design of refractive/diffractive hybrid infrared optical system[J]. Optik, 2017, 131: 592-597.

[8] 江伦, 胡源, 董科研, 等. 红外双波段光学系统被动式消热差设计 [J]. 红外与激光工程, 2015, 44(11): 3353-3357. JIANG Lun, HU Yuan, DONG Keyan, et al. Passive athermal design of dual-band infrared optical system[J]. Infrared and Laser Engineering, 2015, 44(11): 3353-3357.

[9] 陶郅, 王敏, 肖维军, 等. 折/衍混合大视场消热差红外双波段光学系统设计[J].光子学报 , 2017, 46(11): 1122004. TAO Zhi, WANG Min, XIAO Weijun, et al. Design for cooled dual-band infrared refractive-diffractive hybrid optical system of athermalization and wide FOV[J]. Acta Optica Sinica, 2017, 46(11): 1122004.

[10] 范长江 , 王肇圻 , 吴环宝 , 等. 红外双波段双层谐衍射光学系统设计 [J].光学学报 , 2007, 27(7): 1266-1270. FAN Changjiang, WANG Zhaoqi, WU Huanbao, et al. The design of infrared dual-band double-layer harmonic diffractive optical system[J]. Acta Photonica Sinica, 2007, 27(7): 1266-1270.

[11] 杨亮亮. 多层衍射光学元件斜入射衍射效率的测量 [J].光学学报, 2017, 37(2): 0205003. YANG Liangliang. Measurement of diffraction efficiency for multi-layer diffractive optical elements with oblique incidence[J]. Acta Optica Sinica, 2017, 37(2): 0205003.

[12] 孟庆超, 潘国庆 , 张运强 , 等. 红外光学系统的无热化设计 [J].激光与红外, 2008, 37(s): 723-727. MENG Qingchao, PAN Guoqing, ZHANG Yunqiang, et al. Design of athermalizing infrared optical system[J]. Laser & Infrared, 2008, 37(s): 723-727.

杨亮亮, 沈法华, 刘成林, 童巧英. 含有双层衍射光学元件的红外双波段无热化光学系统的设计[J]. 红外技术, 2019, 41(8): 699. YANG Liangliang, SHEN Fahua, LIU Chenglin, TONG Qiaoying. Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements[J]. Infrared Technology, 2019, 41(8): 699.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!