中国激光, 2009, 36 (7): 1605, 网络出版: 2009-07-16  

高平均功率全固态激光器 下载: 2211次

High Average Power Laser Diode Pumped Solid-State Laser
作者单位
华北光电技术研究所固体激光国家级重点实验室, 北京 100015
摘要
综述了近年来棒状、盘片、光纤和热容等高平均功率全固态激光器的进展和国内近期的工作。围绕限制激光器输出平均功率提高和激光光束质量下降的热效应问题, 比较了各类激光器的优缺点。总结了减小或补偿无用热不利影响的现有技术手段, 指出减小激光器热效应可能的技术途径。
Abstract
Current developments of high power laser diode-pumped solid-state lasers such as disk rod laser, disk/slab laser, fiber laser and heat-capacity laser at home and abroad are investigated. Focusing on the problem of thermal effects in solid-state lasers which limits the increment of the output average power and degrades the output beam quality, the advantages and disadvantages of kinds of lasers are compared. Current techniques to decrease or compensate for the effects of the useless heat are summarized, and the probable techniques to reduce the laser′s thermal effects are pointed out.
参考文献

[1] 周寿桓. 固体激光技术研究[J]. 激光与红外, 1994, 24(4): 18~22

    Zhou Shouhuan. Solid State Laser Technology[J]. Laser & Infrared, 1994, 24(4): 18~22

[2] 周寿桓. 固体激光器中的热管理[J]. 量子电子学报, 2005, 22(4): 497~509

    Zhou Shouhuan. The heat managements of the solid-state lasers [J]. Chinese J. Quantum Electronics, 2005, 22(4): 497~509

[3] . Bruesselbach, D. S. Sumida. A 2.65-kW YbYAG single-rod laser[J]. IEEE J. Sel. Top. Quantum Electron., 2005, 11(3): 600-603.

[4] . Lee, M. Yun, B. H. Cha et al.. Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770-W output power[J]. Appl. Opt., 2002, 41(27): 5625-5631.

[5] A. Takada, Y. Akiyama, T. Takase et al.. High-efficiency operation of diode-pumped high-power Nd:YAG rod laser[C]. SPIE, 2000, 4065: 782~789

[6] . Pavel, Y. Hirano, S. Yamamoto et al.. Improved pump-beam distribution in a diode side-pumped solid-state laser with a highly diffuse, cross-axis beam delivery system[J]. Appl. Opt., 2000, 39(6): 986-992.

[7] . Fujikawa, K. Furuta, K. Yasui. 28% electrical-efficiency operation of a diode-side-pumped Nd:YAG rod laser[J]. Opt. Lett., 2001, 26(9): 602-604.

[8] . Konno, T. Kojima, S. Fujikawa et al.. High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser[J]. Opt. Lett., 2000, 25(2): 105-107.

[9] . Akiyama, M. Sasaki, H. Yuasa et al.. Efficient 10 kW diode-pumped Nd:YAG rod laser[J]. Advanced Solid-State Lasers, 2001, 33(4): 46-49.

[10] A. Parker. High-power green lasers open up precision machining[R]. Science & Technology Review(Lawrence Livermore National Laboratory), 1999, October 8~9

[11] . J. Ripin, J. R. Ochoa, R. L. Aggarwal et al.. 165-W cryogenically cooled YbYAG laser[J]. Opt. Lett., 2004, 29(18): 2154-2156.

[12] . A. Clarkson, N. S. Felgate, D. C. Hanna. Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers[J]. Opt. Lett., 1999, 24(12): 820-822.

[13] . Yuasa, Y. Akikama, H. Takada et al.. High-power 10-kW all-solid-state rod-type laser[J]. Review of Laser Engineering, 2003, 31(8): 508-512.

[14] . Hirano, Y. Koyata, S. Yamamoto et al.. 208-W TEM00 operation of a diode-pumped Nd:YAG rod laser[J]. Opt. Lett., 1999, 24(10): 679-681.

[15] . Garnov, V. Mikhailov, R. Serov et al.. Study of the possibility of developing a multichannel-diode-pumped multikilowatt solid-state laser based on optically dense active media[J]. IEEE J. Quantum Electron., 2007, 37(10): 910-915.

[16] . Stewen, K. Contag, M. Larionov et al.. A 1-kW CW thin disc laser[J]. IEEE J. Sel. Top. Quantum Electron., 2000, 6(4): 650-657.

[17] J. A. C. Terry, W. A. Clarkson. Solid State Laser Technologies and Femtosecond Phenomena[M]. London:Bellingham, Washington: SPIE, 2004

[18] J. Vetrovec, R. S. Shah, T. Endo et al.. Progress in the development of solid-state disk laser[C]. SPIE, 2004, 5332: 235~243

[19] J. Vetrovec, A. Koumvakalis, R. Shah. Solid state disk laser for high-average power[C]. SPIE, 2003, 5120: 731~734

[20] J. Vetrovec, A. Koumvakalis, R. D. Shah et al.. Development of solid-state disk laser for high-average power[C]. SPIE, 2003, 4968: 54~64

[21] J. Vetrovec. Ultrahigh-average power solid-state laser[C]. SPIE, 2002, 4760: 491~505

[22] . Giesen. Thin disk lasers-power scalability and beam quality[J]. Laser Technik J., 2005, 2(2): 42-45.

[23] A. Giesen. Results and scaling laws of thin-disk lasers[C]. SPIE, 2004, 5332: 212~227

[24] H. Injeyan, C. S. Hoefer, S. P. Palese. End pumped zig-zag slab laser gain medium[P]. 2001, US6, 268, 956 B1

[25] . P. Machan, W. H. L. Jr, J. Zamel et al.. 5.4 kW diode-pumped, 2.4 × diffraction-limited Nd:YAG laser for material processing[J]. Advanced Solid-State Lasers, 2002, 68: 549-551.

[26] . Nishikawa. Slab-shaped 10 kW all-solid-state laser[J]. Review of Laser Engineering, 2003, 31(8): 513-518.

[27] . S. Rutherford, W. M. Tulloch, S. Sinha et al.. Yb:YAG and Nd:YAG edge-pumped slab lasers[J]. Opt. Lett., 2001, 26(13): 986-988.

[28] . D. Goodno, H. Komine, S. J. McNaught et al.. Coherent combination of high-power, zigzag slab lasers[J]. Opt. Lett., 2006, 31(9): 1247-1249.

[29] . D. Goodno, S. Palese, J. Harkenrider et al.. YbYAG power oscillator with high brightness and linear polarization[J]. Opt. Lett., 2001, 26(21): 1672-1674.

[30] S. Redmond, S. McNaught, J. Zamel et al.. 15 kW near-diffraction-limited single-frequency Nd:YAG laser[C]. Conference on Lasers and Electro-Optics(CLEO), 2007: 1~2

[31] J. Marmo, H. Injeyan, H. Komine et al.. Joint high power solid state laser program advancements at Northrop Grumman[C]. SPIE, 2009, 7195: 719507

[32] H. Injeyan, G. Goodno, H. Komine et al.. High power scalable Nd:YAG laser architecture[C]. Conference on Lasers and Electro-Optics(CLEO), 2005, 1165

[33] B. Bishop. Northrop Grumman Scales New Heights in Electric Laser Power, Achieves 100 Kilowatts From a Solid-State Laser[J]. http://www.irconnect.com/noc/press/pages/ news_releases html d =161575, March 18, 2009

[34] . Limpert, T. Schreiber, A. Liem et al.. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Opt. Express, 2003, 11(22): 2982-2990.

[35] . J. Larsen, G. Vienne. Side pumping of double-clad photonic crystal fibers[J]. Opt. Lett., 2004, 29(5): 436-438.

[36] T. Loftus, A. Liu, P. Hoffman et al.. 258W of spectrally beam combined power with near-diffraction limited beam quality[C]. SPIE, 2006, 6102: 61020S1~S8

[37] J. Abderegg, S. J. Brosnan, M. E. Weber et al.. 8-watt coherently-phased 4-element fiber array[C]. SPIE, 2003, 4974: 1~6

[38] M. L. Minden, H. W. Bruesselbach, J. L. Rogers et al.. Self-organized coherence in fiber laser arrays[C]. SPIE, 2004, 5335: 89~97

[39] A. Shirakawa, K. Matsuo, K. Ueda. Fiber laser coherent array for power scaling of single-mode fiber laser[C]. SPIE, 2004, 5662: 482~487

[40] . Zhou, L. Liu, C. Etson et al.. Phase locking of a two-dimensional laser array by controlling the far-field pattern[J]. Appl. Phys. Lett., 2004, 84(16): 3025-3027.

[41] A. Liu, R. Mead, T. Vatter et al.. Spectral beam combining of high-power fiber lasers[C]. SPIE, 2004, 5335: 81~88

[42] J. Limpert, T. Schreiber, A. Tünnermann. Fiber based high power laser systems[J]. http://www.rp-photonics.com/highpowerfiberlasers.pdf, 2005

[43] . Jeong, J. Sahu, D. Payne et al.. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power[J]. Electron. Lett., 2004, 40(8): 470-472.

[44] IPG. IPG Photonics Achieves Record Two Kilowatt[R].2005

[45] IPG. World Premiere of Super High Power Fiber Laser at Opening of[R].2005

[46] IPG. IPG Photonics Corporation[R].2008. 11

[47] IPG. High Power Fiber Lasers for Industrial Applications[R].2009

[48] http://investor.ipgphotonics.com/releases.cfm

[49] G. Bonati, H. Voelckel, T. Gabler et al.. 1.53 kW from a single Yb-doped photonic crystal fiber laser[J]. Photonics West, San Jose, Late Breaking Developments, Session.

[50] C. B. Dane. High-average-power, solid-state laser with high pulse energy and low beam divergence[R]. Science & Technology Review(Lawrence Livermore National Laboratory), 1995, September: 3

[51] . D. Rotter, C. B. Dane, S. Fochs et al.. Solid-state heat-capacity lasers: good candidates for the marketplace[J]. Photonics Spectra, 2004, 38(8): 44-56.

[52] J. Vetrovec. Solid-state high-energy laser[C]. SPIE, 2002, 4632: 104~114

[53] R. P. Abbott, C. D. Boley, S. N. Fochs et al.. High-power solid-state laser: lethality testing and modeling[R]. Lawrence Livermore National Laboratory, 25th Army Science Conference, UCRL-CONF-224732, 2006

[54] C. B. Dane, S. Fochs, J. Gwo et al.. Solid-state heat-capacity laser for defense[R]. Laser science and technology program update 2002. Lawrence Livermore National Laboratory, UCRL-ID-134972-01, 2003: 16~18

[55] R. M. Yamamoto, J. M. Parker, K. L. Allen et al.. Evolution of a solid state laser[C]. SPIE, 2007, 6552: 655205

[56] R. M. Yamamoto, K. L. Allen, R. W. Allmon et al.. A solid state laser for the battlefield[R].Lawrence Livermore National Laboratory, 25th Army Science Conference, UCRL-CONF-225230, 2006

[57] . Mingxiu, L. Jindong, L. Wenqiang et al.. A kilowatt diode-pumped solid-state heat-capacity double-slab laser[J]. Chin. Phys. Lett., 2006, 23(9): 2530-2533.

[58] 尹宪华, 朱健强, 祖继锋 等. 热容型板条激光器的感应折射率计算[J]. 中国激光, 2008, 35(2): 225~230

    Yin Xianhua, Zhu Jianqiang, Zu Jifeng et al.. Calculation of induced refraction index in heat capacity slab laser[J]. Chinese J. Lasers, 2008, 35(2): 225~230

[59] 鄢歆, 王智勇, 鲍勇 等. 新型弹壳激光打孔机的研制[J]. 红外与激光工程, 2007, 36(S1): 380~383

    Yan Xin, Wang Zhiyong, Bao Yong et al.. Novel laser drilling machine for cartridge[J]. Infrared and Laser Engineering, 2007, 36(S1): 380~383

[60] F. Guoying, O. Qunfei, C. Jianguo et al.. Simulation of the thermal effects in diode-pumped rod laser[C]. SPIE, 2004, 5178: 43~48

[61] 李刚, 冯国英, 李玮 等. Nd:YAG 方形薄片激光器3维温度及热应力的数值模拟[J]. 强激光与粒子束, 2008, 20(4): 557~562

    Li Gang, Feng Guoying, Li Wei et al.. Numerical calculation of distribution of 3D temperature and thermal stress for Nd:YAG square slice laser[J]. High Power Laser and Partical Beams, 2008, 20(4): 557~562

[62] O. Qunfei, C. Jianguo, Z. Wenhui et al.. Thermal distortions of optics irradiated by periodically repeated short pulses[C]. SPIE, 2005, 6028: 562~568

[63] . Qunfei, C. Jianguo, Z. Wenhui et al.. Phase distortions due to temperature rise of optics irradiated by periodically repeated short pulses[J]. Optics and Laser Technology, 2006, 38(8): 631-635.

[64] 赵鸿, 周寿桓, 朱辰 等. 大功率光纤激光器输出功率超过1.2 kW[J]. 激光与红外, 2006, 36(10): 930~930

    Zhao Hong, Zhou Shouhuan, Zhu Chen et al.. High power fiber laser with out power exceeding 1.2 kW[J]. Laser & Infrared, 2006, 36(10): 930~930

[65] 王超, 周寿桓, 唐晓军 等. LD 泵浦 8.7 kW 固体热容激光器实验研究[J]. 红外与激光工程, 2008, 37(1): 77~78

    Wang Chao, Zhou Shouhuan, Tang Xiaojun et al.. Experimental investigation on 8.7 kW laser-diode pumped solid state heat capacity laser[J]. Infrared and Laser Engineering, 2008, 37(1): 77~78

周寿桓, 赵鸿, 唐小军. 高平均功率全固态激光器[J]. 中国激光, 2009, 36(7): 1605. Zhou Shouhuan, Zhao Hong, Tang Xiaojun. High Average Power Laser Diode Pumped Solid-State Laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1605.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!