中国激光, 2020, 47 (2): 0207015, 网络出版: 2020-02-21   

光学相干层析功能成像及脑中风研究进展 下载: 1400次

Advances in Functional Optical Coherence Tomography and Neuroimaging of Stroke
作者单位
浙江大学现代光学仪器国家重点实验室, 光电科学与工程学院, 浙江 杭州 310027
引用该论文

杨珊珊, 姚霖, 刘开元, 李鹏. 光学相干层析功能成像及脑中风研究进展[J]. 中国激光, 2020, 47(2): 0207015.

Yang Shanshan, Yao Lin, Liu Kaiyuan, Li Peng. Advances in Functional Optical Coherence Tomography and Neuroimaging of Stroke[J]. Chinese Journal of Lasers, 2020, 47(2): 0207015.

参考文献

[1] Huang D, Swanson E, Lin C, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[2] Fercher F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66(2): 239-303.

[3] 李培, 杨姗姗, 丁志华, 等. 傅里叶域光学相干层析成像技术的研究进展[J]. 中国激光, 2018, 45(2): 027011.

    Li P, Yang S S, Ding Z H, et al. Research progress in Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 2018, 45(2): 027011.

[4] Leitgeb R A, Drexler W, Unterhuber A, et al. Ultrahigh resolution Fourier domain optical coherence tomography[J]. Optics Express, 2004, 12(10): 2156-2165.

[5] Yun S. Tearney G,de Boer J, et al. High-speed optical frequency-domain imaging[J]. Optics Express, 2003, 11(22): 2953-2963.

[6] Adler D C, Huber R, Fujimoto J G. Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers[J]. Optics Letters, 2007, 32(6): 626-628.

[7] Zhao Y H, Chen Z P, Saxer C, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 2000, 25(2): 114-116.

[8] de Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography: a review[Invited][J]. Biomedical Optics Express, 2017, 8(3): 1838-1873.

[9] Faber D J, Aalders M C G, et al. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography[J]. Optics Express, 2004, 12(19): 4353-4365.

[10] Wang R K, Jacques S L, Ma Z H, et al. Three dimensional optical angiography[J]. Optics Express, 2007, 15(7): 4083-4097.

[11] Faber D J, Mik E G. Aalders M C G, et al. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography[J]. Optics Letters, 2005, 30(9): 1015-1017.

[12] Meyer E P, Ulmann-Schuler A, Staufenbiel M, et al. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease[J]. Proceedings of the National Academy of Sciences, 2008, 105(9): 3587-3592.

[13] Vakoc B J, Lanning R M, Tyrrell J A, et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 2009, 15(10): 1219-1223.

[14] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62.

[15] Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases[J]. Nature, 2000, 407(6801): 249-257.

[16] 吕湘云, 艾明. 光学相干断层扫描血管成像(OCTA)在黄斑疾病中的应用进展[J]. 眼科新进展, 2019, 39(1): 94-97.

    Lü X Y, Ai M. Research advance in clinical application of optical coherence tomography angiography in macular diseases[J]. Recent Advances in Ophthalmology, 2019, 39(1): 94-97.

[17] Srinivasan V J, Mandeville E T, Can A, et al. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke[J]. PLoS One, 2013, 8(8): e71478.

[18] 丁惠洁, 刘珂舟, 杨珊珊, 等. 大鼠脑皮层血管栓塞和再生过程的实时动态记录方法[J]. 生理学报, 2019, 71(4): 581-587.

    Ding H J, Liu K Z, Yang S S, et al. Real-time dynamic recording of cerebral cortical vascular embolization and regeneration in rats[J]. Acta Physiologica Sinica, 2019, 71(4): 581-587.

[19] Nishidate I, Mizushima C, Yoshida K, et al. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression[J]. Journal of Biomedical Optics, 2015, 20(2): 027003.

[20] Baran U, Li Y D, Wang R K. In vivo tissue injury mapping using optical coherence tomography based methods[J]. Applied Optics, 2015, 54(21): 6448-6453.

[21] Yang S S, Liu K Z, Ding H J, et al. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model[J]. Journal of Cerebral Blood Flow & Metabolism, 2019, 39(7): 1381-1393.

[22] Kut C, Chaichana K L, Xi J F, et al. 7(292): 292ra100[J]. in vivo using quantitative optical coherence tomography. Science Translational Medicine, 2015.

[23] Xu C Y, Schmitt J M, Carlier S G, et al. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography[J]. Journal of Biomedical Optics, 2008, 13(3): 034003.

[24] Yang Y, Wang T H, Biswal N C, et al. Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue[J]. Journal of Biomedical Optics, 2011, 16(9): 090504.

[25] Gong P J. McLaughlin R A, Liew Y M, et al. Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking[J]. Journal of Biomedical Optics, 2014, 19(2): 021111.

[26] Es'Haghian S, Gong P J, Chin L, et al. Investigation of optical attenuation imaging using optical coherence tomography for monitoring of scars undergoing fractional laser treatment[J]. Journal of Biophotonics, 2017, 10(4): 511-522.

[27] Fingler J, Schwartz D, Yang C, et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 2007, 15(20): 12636-12653.

[28] Yu L F, Chen Z P. Doppler variance imaging for three-dimensional retina and choroid angiography[J]. Journal of Biomedical Optics, 2010, 15(1): 016029.

[29] Makita S, Hong Y, Yamanari M, et al. Optical coherence angiography[J]. Optics Express, 2006, 14(17): 7821-7840.

[30] Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

[31] Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

[32] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2011, 2(5): 1184-1193.

[33] Wang R K, An L, Francis P, et al. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography[J]. Optics Letters, 2010, 35(9): 1467-1469.

[34] Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 2005, 13(14): 5234-5239.

[35] Guo L, Li P, Pan C, et al. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm[J]. Journal of Optics, 2016, 18(2): 025301.

[36] Cheng Y X, Guo L, Pan C, et al. Statistical analysis of motion contrast in optical coherence tomography angiography[J]. Journal of Biomedical Optics, 2015, 20(11): 116004.

[37] Vakoc B J, Tearney G J, Bouma B E. Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography[J]. IEEE Transactions on Medical Imaging, 2009, 28(6): 814-821.

[38] Li P, Cheng Y X, Li P, et al. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography[J]. Optics Letters, 2016, 41(17): 3944-3947.

[39] Li P, Cheng Y X, Zhou L P, et al. Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement[J]. Optics Letters, 2016, 41(5): 1058-1061.

[40] Makita S, Kurokawa K, Hong Y J, et al. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography[J]. Biomedical Optics Express, 2016, 7(4): 1525-1548.

[41] Braaf B, Donner S, Nam A S, et al. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina[J]. Biomedical Optics Express, 2018, 9(2): 486-506.

[42] Huang L Z, Fu Y M, Chen R X, et al. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model[J]. IEEE Transactions on Medical Imaging, 2019, 38(11): 2695-2704.

[43] Zhang A Q, Zhang Q Q, Chen C L, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 2015, 20(10): 100901.

[44] Yousefi S, Liu T, Wang R K. Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding[J]. Microvascular Research, 2015, 97: 37-46.

[45] Lee J, Jiang J Y, Wu W C, et al. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux[J]. Biomedical Optics Express, 2014, 5(4): 1160-1172.

[46] Li P, Huang Z Y, Yang S S, et al. Adaptive classifier allows enhanced flow contrast in OCT angiography using a histogram-based motion threshold and 3D Hessian analysis-based shape filtering[J]. Optics Letters, 2017, 42(23): 4816-4819.

[47] Vermeer K A, Mo J. Weda J J A, et al. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(1): 322-337.

[48] Yang S S, Liu K Z, Yao L, et al. Correlation of optical attenuation coefficient estimated using optical coherence tomography with changes in astrocytes and neurons in a chronic photothrombosis stroke model[J]. Biomedical Optics Express, 2019, 10(12): 6258-6271.

[49] Brott T, Bogousslavsky J. Treatment of acute ischemic stroke[J]. New England Journal of Medicine, 2000, 343(10): 710-722.

[50] Mukherjee D, Patil C G. Epidemiology and the global burden of stroke[J]. World Neurosurgery, 2011, 76(6): S85-S90.

[51] Wang X W, Li H L, Ding S. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia[J]. Scientific Reports, 2016, 6: 32416.

[52] Barone F C, Kilgore K S. Role of inflammation and cellular stress in brain injury and central nervous system diseases[J]. Clinical Neuroscience Research, 2006, 6(5): 329-356.

[53] Woodruff T M, Thundyil J, Tang S C, et al. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke[J]. Molecular Neurodegeneration, 2011, 6(1): 11.

杨珊珊, 姚霖, 刘开元, 李鹏. 光学相干层析功能成像及脑中风研究进展[J]. 中国激光, 2020, 47(2): 0207015. Yang Shanshan, Yao Lin, Liu Kaiyuan, Li Peng. Advances in Functional Optical Coherence Tomography and Neuroimaging of Stroke[J]. Chinese Journal of Lasers, 2020, 47(2): 0207015.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!