半导体光电, 2014, 35 (3): 434, 网络出版: 2014-06-24  

Ag-N共掺杂ZnO电子结构的理论研究

Study on Electronic Structure of Ag-N Co-doped ZnO
作者单位
1 南京邮电大学 电子科学与工程学院, 南京 210023
2 香港城市大学 物理与材料科学系, 香港 999077
摘要
采用基于DFT理论的第一性原理方法研究了Ag-N共掺杂纤锌矿ZnO的晶格结构和电子结构, 计算了包括共掺杂体系的晶格常数、杂质形成能和电子态密度等性质。研究结果显示, 共掺改善了杂质原子对体相晶格结构的扰动, 提高了掺杂的稳定性。此外, 电子结构的计算表明共掺形成的受主能级较单掺时更浅, 且空穴态的局域性降低, 从而改善了p型ZnO的传导特性, 表明受主共掺可能是一种比较有潜力的p型ZnO掺杂方式。计算与实验结果符合, 为受主共掺形成p型ZnO的机理提供了理论支持。
Abstract
The crystal and electronic structure, involving the crystal lattice, impurity formation energy, as well as density of states, of Ag-N codoped wurtzite ZnO were simulated and then calculated by using the first-principles based on the density functional theory (DFT),. The results show that codoping minimizes the changes of lattice constants resulted form the impurity atoms and improved the stability of the dopant. Besides, Ag-N codoping can form a shallower acceptor level and higher acceptor densities. Furthermore, the nonlocalization of hole carriers is enhanced, the conductivity characters of the p-type ZnO is therefore improved, indicating that the dual-acceptor codoping may be a promising way for generating p-type ZnO. The calculations compare well with the experimental results, which thus provide theoretical support to the formation mechanism of dual-acceptor induced p-type ZnO.
参考文献

[1] Kang S H,Hwang D K, Park S J. Low-resistance and highly transparent Ni/indium-tin oxide ohmic contacts to phosphorous-doped p-type ZnO[J]. Appl. Phys. Lett., 2005, 86(21): 211902-211902-3.

[2] Deng B,Guo Z, Sun H. Theoretical study of Fe-doped p-type ZnO[J]. Appl. Phys. Lett., 2010, 96(17): 172106-172106-3.

[3] Deng B,Sun H Q, Guo Z Y, et al. Theoretical analysis on the improvement of p-type ZnO by B-N codoping[J]. Acta Phys. Sinica, 2010, 2: 520-526.

[4] Yamamoto T,Katayama-Yoshida H. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO[J]. Japanese J. Appl. Phys., 1999, 38(2B): L166.

[5] Sun H Q,Ding S F, Wang Y T, et al. Structural, energetical and electronic properties of CdO and CdxZn1-xO compounds[J]. Acta Phys.-Chim. Sinica, 2008, 24(7): 1233-1238.

[6] Chen L L,Lu J G, Ye Z Z, et al. p-type behavior in In-N codoped ZnO thin films[J]. Appl. Phys. Lett., 2005, 87(25): 252106-252106-3.

[7] Bian J M,Li X M, Gao X D, et al. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis[J]. Appl. Phys. Lett., 2004, 84(4): 541-543.

[8] Ye H B,Kong J F, Shen W Z, et al. Origins of shallow level and hole mobility in codoped p-type ZnO thin films[J]. Appl. Phys. Lett., 2007, 90(10): 102115-102115-3.

[9] Tsukazaki A,Saito H, Tamura K, et al. Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N[J]. Appl. Phys. Lett., 2002, 81(2): 235-237.

[10] Nakahara K,Takasu H, Fons P, et al. Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy[J]. Appl. Phys. Lett., 2001, 79(25): 4139-4141.

[11] Sanmyo M,Tomita Y, Kobayashi K. Preparation of p-type ZnO films by doping of Be-N bonds[J]. Chem. of Mater., 2003, 15(4): 819-821.

[12] Li J B,Wei S H, Li S S, et al. Design of shallow acceptors in ZnO: First-principles band-structure calculations[J]. Phys. Rev. B, 2006, 74(8): 081201-081204.

[13] Lu J G,Zhang Y Z, Ye Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method[J]. Appl. Phys. Lett., 2006, 88(22): 222114-222114-3.

[14] Kanai Y.Admittance spectroscopy of ZnO crystals containing Ag[J]. Japanese J. Appl. Phys., 1991, 30(9R): 2021-2022.

[15] Kang H S,Ahn B D, Kim J H, et al. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant[J]. Appl. Phys. Lett.,2006, 88(20): 202108-202108-3.

[16] Wang B,Zhao Y, Min J H, et al. Ag-N dual-accept doping for the fabrication of p-type ZnO[J]. Appl. Phys. A, 2009, 94(4): 715-718.

[17] Huang L M,Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory[J]. Phys. Rev. B, 2006, 74(7): 075206-075211.

[18] Paudel T R,Lambrecht W R L. First-principles calculation of the O vacancy in ZnO: A self-consistent gap-corrected approach[J]. Phys. Rev. B, 2008, 77(20): 205202-205210.

[19] Wang Q,Sun Q, Jena P, et al. First-principles study of magnetic properties in V-doped ZnO[J]. Appl. Phys. Lett., 2007, 91(6): 063116-063116-3.

[20] Born M,Huang K. Dynamical theory of crystal lattices[M]. Oxford: Clarendon Press, 1954.

[21] Hartree D R.The wave mechanics of an atom with a non-coulomb central field. part I. theory and methods[J]. Cambridge Philosophical Society, 1928, 24(01): 89-110.

[22] Fock V. Z.Physik[J] 1930, 61: 126-130.

[23] Hohenberg P,Kohn W. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136(3B): 864-871.

[24] Kohn W,Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140(4A): A1133-A1138.

[25] Perdew J P,Wang Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33(12): 8800-8802.

[26] Perdew J P,Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.

[27] Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B, 1990, 41(11): 7892-7895.

[28] Segall M D,Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys.: Condensed Matter, 2002, 14(11): 2717-2744.

[29] Decremps F,Datchi F, Saitta A M, et al. Local structure of condensed zinc oxide[J]. Phys. Rev. B, 2003, 68(10): 104101-104110.

[30] Jaffe E,Snydern J A, Lin Z, et al. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO[J], Phys. Rev. B, 2000, 62(3): 1660-1665.

[31] Erhart P,Albe K, Klein A. First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects[J]. Phys. Rev. B, 2006, 73(20): 205203-205211.

[32] Wei S H,Zunger A. Role of metal d states in Ⅱ-Ⅵ semiconductors[J]. Phys. Rev. B, 1988, 37(15): 8958-8981.

[33] Schroer P,Krüger P, Pollmann J. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS[J]. Phys. Rev. B, 1993, 47(12): 6971-6980.

[34] Vogel D,Krüger P, Pollmann J. Ab initio electronic-structure calculations for Ⅱ-Ⅵ semiconductors using self-interaction-corrected pseudopotentials[J]. Phys. Rev. B, 1995, 52(20): R14316-R14319.

[35] Cui X Y,Medvedeva J E, Delley B, et al. Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN[J]. Phys. Rev. Lett., 2005, 95(25): 256404-256407.

[36] Barnes T M,Olson K, Wolden C A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Appl. Phys. Lett., 2005, 86(11): 112112-112114.

[37] Zuo C Y,Wen J, Bai Y L. First-principles investigation of N-Ag co-doping effect on electronic properties in p-type ZnO[J]. Chinese Phys. B, 2010, 19(4): 047101-047104.

谌静, 徐荣青, 陶志阔, 邓贝. Ag-N共掺杂ZnO电子结构的理论研究[J]. 半导体光电, 2014, 35(3): 434. CHEN Jing, XU Rongqing, TAO Zhikuo, DENG Bei. Study on Electronic Structure of Ag-N Co-doped ZnO[J]. Semiconductor Optoelectronics, 2014, 35(3): 434.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!