Photonics Research, 2020, 8 (8): 08001301, Published Online: Jul. 14, 2020   

Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite Download: 804次

Author Affiliations
1 Key Laboratory of Optoelectronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2 e-mail: jqyao@tju.edu.cn
Copy Citation Text

Yifan Li, Yating Zhang, Zhiliang Chen, Qingyan Li, Tengteng Li, Mengyao Li, Hongliang Zhao, Quan Sheng, Wei Shi, Jianquan Yao. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 2020, 8(8): 08001301.

References

[1] Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, J.-L. Sun. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl. Mater. Interfaces, 2018, 10: 36304-36311.

[2] J. T. W. Yeow, M. Zhang. A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite. Carbon, 2020, 156: 339-345.

[3] Q.-M. Wang, Z.-Y. Yang. Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity. Carbon, 2018, 138: 90-97.

[4] M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, K.-S. An. Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method. Carbon, 2017, 116: 167-173.

[5] X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, J. Stake. A flexible graphene terahertz detector. Appl. Phys. Lett., 2017, 111: 021102.

[6] M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, A. Tredicucci. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett., 2012, 12: 96-101.

[7] C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, W. Lu. Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors. NPG Asia Mater., 2018, 10: 318-327.

[8] Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, Z. Zhao. Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene. ACS Appl. Mater. Interfaces, 2019, 11: 6411-6420.

[9] Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, Z. Zhao. Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal. ACS Photon., 2019, 6: 895-903.

[10] C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, E. Guilmeau. Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials. J. Therm. Anal. Calorim., 2018, 131: 3151-3156.

[11] A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, I. I. Bobrinetskiy. Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions. ACS Photon., 2018, 5: 3107-3115.

[12] S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, H. Linke. Bipolar photothermoelectric effect across energy filters in single nanowires. Nano Lett., 2017, 17: 4055-4060.

[13] D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, A. Castellanos-Gomez. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett., 2014, 14: 5846-5852.

[14] M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, A. Castellanos-Gomez. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett., 2013, 13: 358-363.

[15] V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, R. F. Oulton. Plasmon induced thermoelectric effect in graphene. Nat. Commun., 2018, 9: 5190.

[16] X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, P. L. McEuen. Photo-thermoelectric effect at a graphene interface junction. Nano Lett., 2010, 10: 562-566.

[17] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, M. S. Fuhrer. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 2014, 9: 814-819.

[18] W. Liu, W. Wang, Z. Guan, H. Xu. A plasmon modulated photothermoelectric photodetector in silicon nanostripes. Nanoscale, 2019, 11: 4918-4924.

[19] C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, W. Lu. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection. Carbon, 2018, 130: 233-240.

[20] X. Lu, P. Jiang, X. Bao. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nat. Commun., 2019, 10: 138.

[21] Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, J. Yao. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams. Photon. Res., 2020, 8: 368-374.

[22] X. Jiang, J. Zhao, Y.-L. Li, R. Ahuja. Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction. Adv. Funct. Mater., 2013, 23: 5846-5853.

[23] M. T. Pettes, H. Ji, R. S. Ruoff, L. Shi. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett., 2012, 12: 2959-2964.

[24] R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, W. Ji. Laser patterning of epitaxial graphene for Schottky junction photodetectors. ACS Nano, 2011, 5: 5969-5975.

[25] J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, Y. Wang. Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity. Carbon, 2019, 153: 274-284.

[26] H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, B. Jia. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 2019, 13: 270-276.

[27] Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, Y. Chen. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater., 2017, 28: 1704363.

[28] L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, N.-E. Lee. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv. Funct. Mater., 2015, 25: 883-890.

[29] T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, Z. Liu. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett., 2019, 19: 1494-1503.

[30] A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, P. Chen. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater., 2014, 24: 3021-3026.

[31] K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, Y. Chen. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv., 2019, 5: eaav2589.

[32] X. Cao, Z. Yin, H. Zhang. Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci., 2014, 7: 1850-1865.

[33] W. Xu, T.-W. Lee. Recent progress in fabrication techniques of graphene nanoribbons. Mater. Horiz., 2016, 3: 186-207.

[34] H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, H.-S. P. Wong. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology. Nano Lett., 2014, 14: 3214-3219.

[35] S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, K. Kang. Neurite guidance on laser-scribed reduced graphene oxide. Nano Lett., 2018, 18: 7421-7427.

[36] X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, M. Gu. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 2015, 6: 9433.

[37] J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, I.-K. Oh. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano, 2014, 8: 2986-2997.

[38] J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, X. Zhan. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C, 2017, 121: 4917-4923.

[39] S. S. Shin, S. J. Lee, S. I. Seok. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater., 2019, 29: 1900455.

[40] G. J. Snyder, E. S. Toberer. Complex thermoelectric materials. Nat. Mater., 2008, 7: 105-114.

[41] A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, E. Horvath. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett., 2014, 5: 2488-2492.

[42] L. Zhang, X. Su, Z. Sun, Y. Fang. Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films. Appl. Surf. Sci., 2015, 351: 693-696.

[43] K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, Q. Wang. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance. Dalton Trans., 2017, 46: 1766-1769.

[44] X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, W. Lei. Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures. Nanoscale, 2018, 10: 10182-10189.

[45] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun., 2015, 6: 8238.

[46] H. Tian, Y. Cao, J. Sun, J. He. Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors. RSC Adv., 2017, 7: 46536.

[47] X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, T. L. Ren. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun., 2015, 6: 7767.

Yifan Li, Yating Zhang, Zhiliang Chen, Qingyan Li, Tengteng Li, Mengyao Li, Hongliang Zhao, Quan Sheng, Wei Shi, Jianquan Yao. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 2020, 8(8): 08001301.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!