中国激光, 2020, 47 (12): 1204002, 网络出版: 2020-11-27   

锂离子电池内温度场健康状态分布式光纤原位监测技术研究 下载: 1945次

Distributed Optical Fiber In-Situ Monitoring Technology for a Healthy Temperature Field in Lithium Ion Batteries
作者单位
1 中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国科学院低碳转化科学与工程重点实验室(中国科学院上海高等研究院), 上海 201210
引用该论文

周炜航, 叶青, 叶蕾, 李璇, 曾朝智, 黄淳, 蔡海文, 瞿荣辉. 锂离子电池内温度场健康状态分布式光纤原位监测技术研究[J]. 中国激光, 2020, 47(12): 1204002.

Zhou Weihang, Ye Qing, Ye Lei, Li Xuan, Zeng Chaozhi, Huang Chun, Cai Haiwen, Qu Ronghui. Distributed Optical Fiber In-Situ Monitoring Technology for a Healthy Temperature Field in Lithium Ion Batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 1204002.

参考文献

[1] Zhu Y M, Tang S Z, Shi H H, et al. Synthesis of FePO4·xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method[J]. Ceramics International, 2014, 40(2): 2685-2690.

[2] Xie G, Zhu H J, Liu X M, et al. A core-shell LiFePO4/C nanocomposite prepared via a sol-gel method assisted by citric acid[J]. Journal of Alloys and Compounds, 2013, 574: 155-160.

[3] Ding Y, Jiang Y, Xu F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method[J]. Electrochemistry Communications, 2010, 12(1): 10-13.

[4] Zhao X H, Baek D H, Manuel J, et al. Electrochemical properties of magnesium doped LiFePO4 cathode material prepared by sol-gel method[J]. Materials Research Bulletin, 2012, 47(10): 2819-2822.

[5] Fathollahi F, Javanbakht M, Omidvar H, et al. Improved electrochemical properties of LiFePO4/graphene cathode nanocomposite prepared by one-step hydrothermal method[J]. Journal of Alloys and Compounds, 2015, 627: 146-152.

[6] Talebi-Esfandarani M, Savadogo O. Enhancement of electrochemical properties of platinum doped LiFePO4/C cathode material synthesized using hydrothermal method[J]. Solid State Ionics, 2014, 261: 81-86.

[7] Raghavan A, Kiesel P, Sommer L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473.

[8] Fleming J, Amietszajew T, Mcturk E, et al. Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors[J]. HardwareX, 2018, 3: 100-109.

[9] 郭晓际. 特斯拉纯电动汽车技术分析[J]. 科技导报, 2016, 34(6): 98-104.

    Guo X J. Tesla electric vehicle technology analysis[J]. Science & Technology Review, 2016, 34(6): 98-104.

[10] Weston AH, Paul BK, DorianW, et al. 2010-06-03.

[11] Fleckenstein M, Bohlen O, Roscher M A, et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients[J]. Journal of Power Sources, 2011, 196(10): 4769-4778.

[12] Bandhauer T M, Garimella S, Fuller T F. A Critical Review of Thermal Issues in Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): R1-R25.

[13] Udd E, Shulz W L, Seim J M, et al. Fiber optic distributed sensing systems for harsh aerospace environments[J]. Proceedings of SPIE, 1999, 3674: 136-147.

[14] Corbellini S, Parvis M, Grassini S, et al. Modified POF sensor for gaseous hydrogen fluoride monitoring in the presence of ionizing radiations[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(5): 1201-1208.

[15] Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures, 2004, 26(11): 1647-1657.

[16] Nellen P M, Mauron P, Frank A, et al. Reliability of fiber Bragg grating based sensors for downhole applications[J]. Sensors and Actuators A: Physical, 2003, 103(3): 364-376.

[17] BanaszczykJ, AdamczykB. Investigation of dielectric strength of solid insulating materials[C]∥2017 Progress in Applied Electrical Engineering (PAEE), June 25-30, 2017, Koscielisko, Poland.New York: IEEE Press, 2017: 1- 7.

[18] Ganguli A, Saha B, Raghavan A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341: 474-482.

[19] Torres E A, Montoro F, Righetto R D, et al. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking[J]. Journal of Microscopy, 2014, 254(3): 157-165.

[20] 徐一旻, 丁宏军, 王剑, 等. 基于密集型光纤光栅温度传感器的电池温度监测系统: CN109580039A[P].2019-04-05.

    Xu YM, Ding HJ, WangJ, et al. 2019-04-05.

[21] Bernardi D, Pawlikowski E M, Newman J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.

[22] 周炜航, 叶青, 叶蕾, 等. 基于锂电池的光纤温度传感器埋入方法: CN201910840056.0[P].2019-09-06.

    Zhou WH, YeQ, YeQ, et al. 2019-09-06.

[23] 刘延超, 方进, 徐翀, 等. 镀金光纤布拉格光栅传感器用于锂离子电池原位检测的可行性[J]. 激光与光电子学进展, 2017, 54(7): 040602.

    Liu Y C, Fang J, Xu C, et al. Feasibility of gold-plated fiber Bragg grating sensors used in lithium-ion battery in-situ detection[J]. Laser & Optoelectronics Progress, 2017, 54(7): 040602.

[24] 刘春娜. 特斯拉汽车电池技术及策略[J]. 电源技术, 2014, 38(7): 1201-1202.

    Liu C N. Tesla car battery technology and strategy[J]. Chinese Journal of Power Sources, 2014, 38(7): 1201-1202.

[25] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

[26] 杨颖. 分布式大容量光纤光栅传感网络的组网技术[J]. 光学技术, 2019, 45(6): 712-717, 736.

    Yang Y. Networking technology of the distributed large capacity fiber grating[J]. Optical Technique, 2019, 45(6): 712-717, 736.

[27] 陶渊, 张翠, 童杏林, 等. 用低反射率光栅阵列实现智能复合电力电缆温度监测[J]. 光电子·激光, 2019, 30(2): 134-139.

    Tao Y, Zhang C, Tong X L, et al. Temperature monitoring for intelligent composite electric cable by weak reflective fiber Bragg grating array[J]. Journal of Optoelectronics·Laser, 2019, 30(2): 134-139.

[28] 娄辛灿, 郝凤欢, 刘鹏飞, 等. 一种光纤光栅阵列波长解调系统[J]. 激光与光电子学进展, 2019, 56(3): 030604.

    Lou X C, Hao F H, Liu P F, et al. A wavelength demodulation system for fiber Bragg grating array[J]. Laser & Optoelectronics Progress, 2019, 56(3): 030604.

周炜航, 叶青, 叶蕾, 李璇, 曾朝智, 黄淳, 蔡海文, 瞿荣辉. 锂离子电池内温度场健康状态分布式光纤原位监测技术研究[J]. 中国激光, 2020, 47(12): 1204002. Zhou Weihang, Ye Qing, Ye Lei, Li Xuan, Zeng Chaozhi, Huang Chun, Cai Haiwen, Qu Ronghui. Distributed Optical Fiber In-Situ Monitoring Technology for a Healthy Temperature Field in Lithium Ion Batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 1204002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!