红外与激光工程, 2019, 48 (2): 0226001, 网络出版: 2019-04-05   

基于三维反正切函数拟合的光斑质心提取算法

Spot centroid extraction algorithm based on three-dimensional arctangent function fitting
张惠 1,2,3李国平 1,2张勇 1,2胡守伟 1,2,3
作者单位
1 中国科学院国家天文台 南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院 南京天文光学技术研究所 天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
摘要
在诸多需要对光斑质心进行定位的领域里, 光斑质心定位的精确性和稳定性都是至关重要的。根据光学系统对物体边缘的模糊原理, 提出一种新的光斑中心提取算法。该算法是以反正切函数为基函数, 通过对其变量代换从而得到可以拟合光斑灰度分布的函数。求解过程中首先通过高斯-牛顿法进行迭代, 然后再通过最小二乘法进行最优解估计。文中先通过仿真分析, 对比了文中算法与传统算法的优劣, 进一步通过实验验证该方法相对于传统方法的优势。实验结果表明: 基于文中算法光斑质心提取精度为0.125 3个像素; 此时角度传感器的测角精度为0.172 3″, 优于传感器技术要求的0.25″。文中算法对噪声、对比度、光斑的长宽比和大小的综合性能优于传统算法, 实验结果稳定可靠, 满足角度传感器使用要求。
Abstract
The precision and stability of spot centroid location were crucial in many fields. According to the edge blurring principle on the optical system, a new algorithm of spot centroid extraction was proposed. The proposed algorithm, based on the arctangent function, can be used to fit the gray distribution of the light spot by variable substitution, and then the centroid of spot can be obtained. In the process of solution, the Gauss-Newton method was adopted to iterate, and then the least square method was used for optimal estimation. Firstly, the advantage and disadvantages of the proposed algorithm between the traditional algorithms were obvious through comparison analysis, and then the feasibility was validated experimentally. The experimental results show that the location precision of the spot centroid is 0.125 3 pixels, and the angle measurement accuracy of the photoelectric sensor is 0.172 3″, superior to the sensor′s technical requirement 0.25″. The robustness of the proposed algorithm to noise, contrast, aspect ratio and size is superior to the traditional algorithms. The experimental results were stable and reliable, and meet the requirement of the angle sensor.grayscale fitting
参考文献

[1] Kong Fanpeng, Manuel Cegarra Polo, Andrew Lambert. Centroid estimation for a Shack-Hartmann wavefront sensor based on stream processing [J]. Applied Optics, 2017, 56(23): 6466-6475.

[2] Grass David, Fesel Julian, Hofer Sebastian G, et al. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers [J]. Applied Physics Letters, 2016, 108(22): 1-8.

[3] Xin Lei, Xu Lijun, Cao Zhang. Laser spot center location by using the garddient-based and least square algorithms[C]//IEEE International Instrumentation and Measurement Technology Conference, 2013: 1242-1245.

[4] Werner F, Gdaniec N, Knopp T. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging [J]. Physics in Medicine & Biology, 2017, 62(9): 3407-3421.

[5] Jeremie Fish, Jan Scrimgeour. Fast weighted centroid algorithm for single particle localization near the information limit [J]. Applied Optics, 2015, 54(20): 6360-6366.

[6] Qian Feng, Yang Mingyu, Zhang Xiaopei. Improvement of localization accuracy of spot centroid based on sequential images[J]. Optics and Precision Engineering, 2016, 24(11): 2880-2888. (in Chinese)

[7] 王丹, 高廖延, 张敏. 双光束干涉仪中椭圆拟合估算的参数精度研究[J]. 光学学报, 2016, 36(3): 105-110.

    Wang Dan, Liao Yanbiao, Zhang Min. Analysis of precisions of parameters calculated by ellipse fitting in double beam interferometer[J]. Acta Optica Sinica, 2016, 36(3): 105-110. (in Chinese)

[8] 王丽丽, 胡中文, 季杭馨. 基于高斯拟合的激光光斑中心定位算法[J]. 应用光学, 2012, 33(5): 987-990.

    Wang Lili, Hu Zhongwen, Ji Hangxin. Laser spot center location algorithm based on Gaussian fitting [J]. Journal of Applied Optics, 2012, 33(5): 987-990. (in Chinese)

[9] 唐艳琴, 顾国华, 钱惟贤, 等. 四象限探测器基于高斯分布的激光光斑中心定位算法[J]. 红外与激光工程, 2017, 46(2): 0206003.

    Tang Yanqin, Gu Guohua, Qian Weixian, et al. Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution[J]. Infrared and Laser Engineering, 2017, 46(2): 0206003. (in Chinese)

[10] 王拯洲, 胡炳樑, 殷勤业, 等. 综合诊断系统多维度重构小孔光斑中心测量方法[J]. 红外与激光工程, 2015, 44(S1): 73-79.

    Wang Zhengzhou, Hu Bingliang, Yin Qinye, et al. Method for measuring laser spot center based on multi-dimensional reconstruction in integrated diagnostic system[J]. Infrared and Laser Engineering, 2015, 44(S1): 73-79. (in Chinese)

[11] 孙慧涛, 李木国. 多尺度光斑中心的快速检测[J]. 光学 精密工程, 2017, 25(5): 1348.

    Sun Huitao, Li Muguo. Fast and accurate detection of multi-scale light spot centers[J]. Optics and Precision Engineering, 2017, 25(5): 1348. (in Chinese)

[12] 孙立环, 赵霄洋, 高凌妤, 等. 基于亚像素定位技术的激光光斑中心位置测量[J]. 激光技术, 2017, 41(4): 011.

    Sun Lihuan, Zhao Xiaoyang, Gao Lingyu, et al. Measurement of laser spot center position based on sub pixel positioning technoloty[J]. Laser Technology, 2017, 41(4): 011. (in Chinese)

[13] 李晓彤, 岑兆丰. 几何光学.像差.光学设计[M]. 杭州: 浙江大学出版社, 2014.

    Li Xiaotong, Cen Zhaofeng, Geomerical Optics, Aberrations and Optical Design [M]. Hangzhou: Zhejiang University Press, 2014. (in Chinese)

[14] 赵淑波, 李立伟. 关于高斯牛顿法的注记[J]. 哈尔滨师范大学(自然科学学报), 2016, 32(3): 6-10.

    Zhao Shubo, Li Liwei. Note about Gauss newton method [J]. Natural Sciences Journal of Harbin Normal University, 2016, 32(3): 6-10. (in Chinese)

[15] 王娜. 新疆奇台110 m射电望远镜[J]. 中国科学: 物理学 力学 天文学, 2014, 44(8): 783-794.

    Wang Na. Xingjiang Qitai 110 m radio telescope [J]. Scientia Sinica Physica: Mechanica & Astronomica, 2014, 44(8): 783-794. (in Chinese)

张惠, 李国平, 张勇, 胡守伟. 基于三维反正切函数拟合的光斑质心提取算法[J]. 红外与激光工程, 2019, 48(2): 0226001. Zhang Hui, Li Guoping, Zhang Yong, Hu Shouwei. Spot centroid extraction algorithm based on three-dimensional arctangent function fitting[J]. Infrared and Laser Engineering, 2019, 48(2): 0226001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!