光学学报, 2011, 31 (3): 0317003, 网络出版: 2011-03-01  

一维光传输介质中折射率波动的统计表征

Statistical Characterization on Refractive-Index Fluctuations of One-Dimensional Light Propagating Medium
作者单位
1 浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
2 浙江长征职业技术学院, 浙江 杭州 310023
摘要
介绍了一种基于介观反射光谱分析的纳米尺度折射率波动表征的方法,揭示了介观反射光谱用于纳米尺度折射率波动表征的机理。采用时域有限差分方法,分析了光在一维折射率分布介质中的传播情况和光谱特征,并通过精确控制一维通道内部折射率波动的标准差和空间相关长度,定量分析了混乱度的仿真计算值及其与理论设置值的关系。结果表明,反射光谱对混乱度的变化是高度敏感的,一维光传输通道内纳米尺度上的折射率波动可以通过反射光谱来感知,且混乱度在一定近似条件下,随着折射率波动方差及其相关长度的增大而线性增大。该方法避开了远场光学衍射极限的限制,有望获得以往无法觉察的纳米尺度变化的统计信息。
Abstract
A method based on reflective mesoscopic spectroscopy for characterization of refractive-index fluctuations at nano-scale is introduced. Mechanism of mesoscopic spectroscopy for perceiving reflective-index fluctuations at length scale of nanometers is revealed. Based on simulation by finite difference time domain method, light propagation in one-dimensional refractive-index variable medium and resulting reflective spectral characteristics are analyzed. Through precise control of standard deviation and spatial correlation length of refractive-index fluctuations along one-dimensional channel, simulated disorder strengths and their relation to theoretical settings are quantitatively analyzed. Results show that reflective spectrum is highly sensitive to disorder strength and thus it is feasible for the refractive index fluctuations at nano-scale within one-dimensional channel to be perceived through reflective spectrum. Under certain approximating conditions, disorder strength is proportionally enlarged with increasing variance and spatial correlation length describing refractive-index fluctuations. The proposed method might be useful in probing statistical structural changes at nano-scale which are unperceivable up to now, and hence avoiding the limitation due to optical diffraction in far field.
参考文献

[1] J. Bozzola, L. Dee. Electron Microscopy: Principles and Techniques for Biologists [M]. Sudbury: Jones and Bartlett Publishers, 1999

[2] . Bartek, X. Wang, W. Wells er al.. Estimation of subcellular particle size histograms with electron microscopy for prediction of optical scattering in breast tissue[J]. J. Biomed. Opt., 2006, 11(6): 064007.

[3] 俞晓峰, 丁志华, 陈宇恒 等. 光纤型光学相干层析成像系统的研制 [J]. 光学学报, 2006, 26(2): 235~238

    Yu Xiaofeng, Ding Zhihua, Cheng Yuheng et al.. Development of fiber-basal optical coherence tomographic imaging system [J]. Acta Optica Sinica, 2006, 26(2): 235~238

[4] Kai Wang, Zhihua Ding. Spectral calibration in spectral domain optical coherence tomography [J]. Chin. Opt. Lett., 2008, 6(12): 902~904

[5] 王凯, 丁志华, 吴彤 等. 谱域光学相干层析去复共轭成像 [J]. 光学学报, 2009, 29(s1): 32~36

    Wang Kai, Ding Zhihua, Wu Tong et al.. Complex-conjuyate resolved spectral domain optical coherence tomography imaging [J]. Acta Optica Sinica, 2009, 29(s1): 32~36

[6] 吴彤, 丁志华. 20 kHz扫频光学相干层析系统 [J]. 中国激光, 2009, 36(2): 503~508

    Wu Tong, Ding Zhihua. Development of 20 kHz swept source optical coherence tomograhpy system [J]. Chinese J. Lasers, 2009, 36(2): 503~508

[7] . Sung. Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervicalsquamous epithelium in vivo[J]. Opt. Express, 2003, 11(24): 3171-3181.

[8] . Georgakoudi, B. Jacobson, J. Van Dam et al.. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett′s esophagus[J]. Gastroenterology, 2001, 120(7): 1620-1629.

[9] D. Courjon. Near Field Microscopy and Near Field Optics [M]. London: Imperial College Press, 2003

[10] . Hell. Toward fluorescence nanoscope[J]. Nat. Biotechnol., 2003, 21(11): 1347-1355.

[11] S. Hell, K. Willig, M. Dyba et al.. Nanoscale Resolution with Focused Light: STED Andother RESOLFT Microscopy Concepts, Handbook of Biological Confocal Microscopy [M]. Third Edition, Edited by James B. Pawley, New York: Springer Science Business Media, 2006, 571~579

[12] . Subramanian, P. Pradhan, Y. Liu et al.. Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an.application to cancer diagnosis[J]. Opt. Lett., 2009, 34(4): 518-520.

[13] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light [M]. Cambridge UK: Cambridge Univ Press, 1999

[14] . W. Anderson. Absence of diffusion in certain random lattices[J]. Phys. Rev., 1958, 109(5): 1492-1505.

[15] . W. Anderson, D. J. Thouless, E. Abrahams et al.. New method for a scaling theory of localization[J]. Phys. Rev. B, 1980, 22(8): 3519-3526.

[16] N. Kumar. Resistance fluctuation in a one-dimensional conductor with statis disorder [J]. Phys. Rev. B, 1985. 31(8): 5513~5515

[17] Vadim Backman, Yang Liu, Young Kim et al.. Method for identifying refractive-index fluctuations of a target [P]. US 2008/0278713 A1

[18] . Roy, Y. Liu, R. Wali et al.. Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis[J]. Gastroenterology, 2004, 126(4): 1071-1081.

[19] . B. Haley, P. Erdos. Wave-propagation in one-dimensional disordered structures[J]. Phys. Rev. B, 1992, 45(12): 8572-8584.

[20] . Rammal, B. Doucot. Invariant imbedding approach to localization. 1. General framework and basic equations[J]. J. Phys. (Paris), 1987, 48(4): 509-526.

[21] . Li, Z. G. Chen, A. Taflove et al.. Equiphase-sphere approximation for light scattering by stochastically inhomogeneous microparticles[J]. Phys. Rev. E, 2004, 70(5): 056610.

[22] . R. Capoglu, J. D. Rogers, A. Taflove et al.. Accuracy of the Born approximation in calculating the scattering coefflcient of biological continuous random media[J]. Opt. Lett., 2009, 34(17): 2679-2681.

陶渊浩, 丁志华, 符建, 杨柳. 一维光传输介质中折射率波动的统计表征[J]. 光学学报, 2011, 31(3): 0317003. Tao Yuanhao, Ding Zhihua, Fu Jian, Yang Liu. Statistical Characterization on Refractive-Index Fluctuations of One-Dimensional Light Propagating Medium[J]. Acta Optica Sinica, 2011, 31(3): 0317003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!