Photonics Research, 2017, 5 (3): 03000194, Published Online: Oct. 9, 2018  

Effects of the slot width and angular position on the mode splitting in slotted optical microdisk resonator Download: 885次

Author Affiliations
1 School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
2 International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
Copy Citation Text

Lingling Dai, Yiheng Yin, Yanhui Hu, Biyao Yang, Ming Ding. Effects of the slot width and angular position on the mode splitting in slotted optical microdisk resonator[J]. Photonics Research, 2017, 5(3): 03000194.

References

[1] A. B. Matsko, V. S. Ilchenko. Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Sel. Top. Quantum Electron., 2013, 12: 15-32.

[2] K. J. Vahala. Optical microcavities. Nature, 2015, 424: 839-846.

[3] S. M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 2002, 415: 621-623.

[4] H. Rokhsari, K. J. Vahala. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics. Phys. Rev. Lett., 2004, 92: 253905.

[5] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006, 443: 671-674.

[6] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol., 2012, 7: 301-304.

[7] A. R. Ali, T. Ioppolo, V. Ötügen, M. Christensen, D. MacFarlane. Photonic electric field sensor based on polymeric microspheres. J. Polym. Sci. B, 2014, 52: 276-279.

[8] F. Vollmer, L. Yang. Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 2012, 1: 267-291.

[9] A. M. Armani, R. P. Kulkarni, S. E. Fraser. Label-free, single-molecule detection with optical micro-cavities. Science, 2007, 317: 783-787.

[10] S. M. Grist, S. A. Schmidt, J. Flueckiger. Silicon photonic micro-disk resonators for label-free biosensing. Opt. Express, 2013, 21: 7994-8006.

[11] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett., 2004, 85: 6113-6115.

[12] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925-928.

[13] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 2000, 17: 1051-1057.

[14] D. Farnesi, A. Barucci, G. C. Righini. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators. Phys. Rev. Lett., 2014, 112: 093901.

[15] D. O’Shea, A. Rettenmaier, A. Rauschenbeutel. Active frequency stabilization of an ultra-high Q whispering-gallery-mode microresonator. Appl. Phys. B, 2010, 99: 623-627.

[16] C. Junge, S. Nickel, D. O’Shea. Bottle microresonator with actively stabilized evanescent coupling. Opt. Lett., 2011, 36: 3488-3490.

[17] D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 1995, 20: 1835-1837.

[18] J. Zhu, S. K. Özdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2009, 4: 46-49.

[19] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 2014, 112: 203901.

[20] X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, Q. H. Gong. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q, whispering-gallery-mode microresonator. Phys. Rev. A, 2011, 83: 23803.

[21] T. J. Kippenberg. Microresonators: particle sizing by mode splitting. Nat. Photonics, 2010, 4: 9-10.

[22] B. B. Li, W. R. Clements, X. C. Yu, K. B. Shi, Q. H. Gong, Y. F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 2014, 111: 14657-14662.

[23] L. He, S. K. Özdemir, J. Zhu, L. Yang. Ultra-sensitive detection of mode splitting in active optical microcavities. Phys. Rev. A, 2010, 82: 053810.

[24] L. He, S. K. Ozdemir, Y. F. Xiao, L. Yang. Gain-induced evolution of mode splitting spectra in a high-, active microresonator. IEEE J. Quantum Electron., 2010, 46: 1626-1633.

[25] D. C. Aveline, D. V. Strekalov, N. Yu. Micro-slotted whispering gallery mode resonators for optomechanical. Appl. Phys. Lett., 2014, 105: 021111.

[26] S. Wang, K. Broderick, H. Smith. Strong coupling between on chip notched ring resonator and nanoparticle. Appl. Phys. Lett., 2010, 97: 051102.

[27] A. Mazzei, S. Gotzinger, L. S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counter propagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 2007, 99: 173603.

[28] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 2002, 65: 066611.

Lingling Dai, Yiheng Yin, Yanhui Hu, Biyao Yang, Ming Ding. Effects of the slot width and angular position on the mode splitting in slotted optical microdisk resonator[J]. Photonics Research, 2017, 5(3): 03000194.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!