量子电子学报, 2016, 33 (4): 405, 网络出版: 2016-10-24   

基于液晶显示器的无透镜单像素成像研究

Lensless single pixel imaging based on LCD
作者单位
郑州大学物理工程学院, 河南 郑州 450001
摘要
基于获取物体傅里叶频谱实现单像素成像的理论,提出了通过对液晶显示器(LCD)加载一系列 灰度条纹图像,利用置于屏幕前的单点光电探测器接收物体透射光强实现无透镜单像素成像的方法。 该系统降低了对硬件的要求,光路紧凑,灵活性强。理论上证明了LCD加载图像时图像灰度与透射 光强之间存在的非线性关系对系统成像没有影响,实验上验证了该方法的可行性。实验结果表明:加 载条纹后需预留给显示器液晶分子一定的响应时间以使探测器准确获取光强,显著减小了背景噪声和 共轭像干扰,提高了重建图像质量。
Abstract
Based on the single pixel imaging theory realized by acquisiting Fourier spectra, a single-pixel lensless imaging method is proposed by loading a series of gray stripes on a liquid crystal display (LCD) screen and placing a single pixel photoelectric detector in front of it to receive the light projected by an object. The imaging system reduces the requirements for hardware, has compact optical path and strong flexibility. It is verified theoretically that the nonlinearity between the gray scale of the image loaded on LCD and the intensity of transmitted light has no influence on reconstructed images. The effectiveness of the imaging method is confirmed experimentally. Experimental results show that after loading the stripe, it’s needed to set aside certain response time, so that the detector is able to obtain accurate light intensity. Background noise and interference of conjugate image are significantly reduced and the reconstructed image quality is improved.
参考文献

[1] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[C]. Proceedings of the National Academy of Sciences, 2008, 105(31): 10670-10675.

[2] Pang S, Cui X, DeModena J, et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate[J]. Lab. on a Chip., 2010, 10(4): 411-414.

[3] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[C]. Proceedings of the National Academy of Sciences, 2011, 108(41): 16889-16894.

[4] Lee S A, Leitao R, Zheng G, et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis[J]. Plos One, 2011, (10): e26127.

[5] Garcia-Sucerquia J, Xu W, Jericho M H, et al. Immersion digital in-line holographic microscopy[J]. Optics Letters, 2006, 31(9): 1211-1213.

[6] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab. on a Chip., 2011, 11(7): 1276-1279.

[7] Isikman S O, Bishara W, Mavandadi S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[C]. Proceedings of the National Academy of Sciences, 2011, 108(18): 7296-7301.

[8] Greenbaum A, Luo W, Su T W, et al. Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9): 889-895.

[9] Wei Q, et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography[J]. Sci. Rep., 2013, 3: 1699.

[10] Tseng D, Mudanyali O, Oztoprak C, et al. Lensfree microscopy on a cellphone[J]. Lab. on a Chip., 2010, 10(14): 1787-1792.

[11] Fang Shaozheng, Deng Jing. Scene monitoring algorithm based on single-pixel imaging system[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(1): 24-29 (in Chinese).

[12] Zhang Q, Langrock C, Fejer M M, et al. Waveguide-based single-pixel up-conversion infrared spectrometer[J]. Optics Express, 2008, 1(24): 19557-19561.

[13] Ma Y, Grant J, Saha S, et al. Terahertz single pixel imaging based on a Nipkowdisk[J]. Optics Letters, 2012, 37(9): 1484-1486.

[14] Withayachumnankul W, Abbott D. Terahertz imaging: Compressing onto a single pixel[J]. Nature Photonics, 2014, 8(8): 593-594.

[15] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[16] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

[17] Pittman T B, Shih Y H, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432.

[18] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 1995, 74(18): 3600-3603.

[19] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

[20] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134): 844-847.

[21] Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.

[22] Durán V, Soldevila F, Irles E, et al. Compressive imaging in scattering media[J]. Optics Express, 2015, 23(11): 14424-14433.

[23] Lv Pei, Zhou Renkui, He Junhua, et al. Research on underwater single-pixel imaging system[J]. Journal of Optoelectronics · Laser (光电子·激光), 2011, 22(9): 1425-1430 (in Chinese).

[24] Zhang Z, et al. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nat. Commun., 2015, 6: 6225.

[25] Bian L, Suo J, et al. Fourier computational ghost imaging using spectral sparsity and conjugation priors[J]. Physics Optics, 2015, arXiv:1504.03823V1.

范晓杭, 田勇志, 韩建辉, 梁二军. 基于液晶显示器的无透镜单像素成像研究[J]. 量子电子学报, 2016, 33(4): 405. FAN Xiaohang, TIAN Yongzhi, HAN Jianhui, LIANG Erjun. Lensless single pixel imaging based on LCD[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 405.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!