光通信研究, 2018 (1): 38, 网络出版: 2018-04-09  

基于折射率补偿的线性啁啾光栅非对称变迹

Asymmetric Apodization of Linear Chirped Fiber Grating based on Refractive Index Compensation
作者单位
安徽工程大学 检测技术与节能装置省级实验室,安徽 芜湖 241000
摘要
针对线性啁啾光栅反射谱有震荡、两侧有旁瓣等问题,从耦合模理论出发,研究了调制深度Δn、光栅长度L和啁啾系数C等对其反射谱的影响,深入探讨了重要参数与特性的关系。提出了基于折射率补偿的非对称变迹优化方法,探寻了有效的变迹函数、补偿系数和最佳比例。结果表明,随着L(5~100 mm)、Δn(10-5~10-3)和C(0.01~0.2 nm/cm)的增大,峰值都向长波长方向漂移,3 dB带宽都增大,分别为1.79、1.26和1.71 nm,且基本成线性关系;L较小时,反射谱顶部有较大震荡;Δn较大时,反射谱两侧出现明显旁瓣。优化后时延线性区域增大,色散曲线更平稳,反射谱顶部较平坦,没有旁瓣,带宽没有减小,具有更好的光学特性。
Abstract
In order to solve the problems of oscillation on the top and side lobes of reflection spectrum for linear chirped grating, the influences of refractive index modulation depth, grating length, chirp coefficient on reflection spectrum are studied based on coupled mode theory, and the relationship between parameters and characteristics are deeply explored in this paper. A asymmetric apodized optimization method based on refractive index compensation is proposed. The effective apodization functions, compensation factor and optimal piecewise apodization ratio are also explored. Simulation results show that the peak shifts to the direction of longer wavelength, and the 3 dB bandwidths increase basically linear with L(5~100 mm), Δn (10-5~10-3) and C(0.01~0.2 nm/cm), which can achieve 1.79, 1.26, 1.71 nm, respectively. The peak value increases with L and Δn, and decreases with C. There is a big shock at the top when L is small. When Δn is large, obvious side lobes appear on both sides of the central spectrum. After applying the optimization algorithm, the linear region has increased, and the dispersion curve has been more stable. Compared to the traditional algorithm, the top of reflection spectrum is much more flat with no side lobe and no bandwidth reduction. The proposed optimization algorithm shows the better optical characteristics.
参考文献

[1] 汪雨寒. 非均匀光纤光栅传输特性快速分析及仿真 [D]. 重庆: 重庆大学,2011.

[2] 谢枫锋.啁啾光纤光栅在通信系统中的理论研究与应用 [D].无锡: 江南大学,2014:2-4,8-12.

[3] 姚琳琳,谢涛,景燕敏,等.光纤Bragg光栅折射率调制特性研究 [J].传感器与微系统,2016,35(7):16-18.

[4] 魏佳菊,梁一平,戴特力.线性啁啾光纤布喇格光栅反射谱的数值模拟[J].激光技术,2012,36(5):607-611.

[5] 宋维彬,景燕敏, 张丰伟,等.啁啾光纤光栅的光谱特性研究 [J].传感器与微系统,2014,33(5):42-44.

[6] Sengupta S, Ghorai S K. Ultra-narrow Band Optical Comb Filter Using Gaussian-sampled Fiber Bragg Grating with Periodic Chirp Effect [J]. Optical and Quantum Electronics, 2016, 48(10): 482-486.

[7] FENG Shu-qing, XIONG Ke,BIAN Kan, et al. FBG Self-chirped based on an Sine-structure [J]. Spectroscopy and Spectral Analysis,2017,37(1):283-286.

[8] 钱景仁.耦合模理论及其在光纤光学中的应用 [J].光学学报,2009,29(5): 1188-1192.

[9] 于坤江.光纤光栅制作技术及应用的研究 [D].北京:北京交通大学,2016:13-16.

[10] LIU Zheng-yong,Tam Hwa-Yaw.Industrial and Medical Applications of Fiber Bragg Gratings [J].Chinese Optics Letters, 2016,14(12):120007.

孙瑞霞, 李炜, 赵发, 王宗乾. 基于折射率补偿的线性啁啾光栅非对称变迹[J]. 光通信研究, 2018, 44(1): 38. SUN Rui-xia, LI Wei, ZHAO Fa, WANG Zong-qian. Asymmetric Apodization of Linear Chirped Fiber Grating based on Refractive Index Compensation[J]. Study On Optical Communications, 2018, 44(1): 38.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!