光学学报, 2018, 38 (1): 0107001, 网络出版: 2018-08-31   

折反式2f系统光学相关器的研究

Folding Reflective 2f System Optical Correlator
杨拓 1,2徐平 1,2,*周亮 1,2喻珺 1,2李雄超 1,2黄海漩 1,2
作者单位
1 深圳大学电子科学与技术学院, 广东 深圳 518060
2 深圳大学微纳光电子技术研究所, 广东 深圳 518060
摘要
为进一步缩小光学相关器体积,设计了一种折反式2f系统光学相关器,光路采用折叠反射式结构,用数字微透镜取代传统相关器中的实体透镜,缩减了结构体积,提升了系统集成度。利用等效光路法对其进行理论分析,给出了折反式2f相关器的结构设计条件及结构参数。针对该相关器,设计了与之匹配的综合鉴别函数滤波器,利用自编程序进行模拟仿真分析。结果显示,当待识别目标发生缩放与旋转畸变时, 该相关器仍具有较好的畸变不变识别性能。
Abstract
In order to further reduce the volume of optical correlator, an optical correlator for folding reflective 2f system is designed. The optical path adopts folding reflective structure. Digital micro lens replaces physical lens in the traditional correlator to reduce the volume of the structure and improve the system integration. The structural design conditions and structural parameters of the folding reflective 2f correlator are given theoretically based on equivalent optical path method. The optimal trade-off share duplexed filter (SDF) is designed for the correlator, and the simulation analysis is performed by a self-compiled program. Simulation results indicate that the correlator still has good distortion invariant recognition performance when the target is subject to scaling and rotation distortion.

1 引言

4f结构光学相关器在1964年由Lugt[1]提出,具有信息并行处理、空间带宽积大、信噪比高等特点,在目标检测、机器视觉、人工智能等领域应用广泛[2-6]。目前光学相关器已由早期的同轴结构发展为折反式集成结构[7-10],将器件集成于一个平面,利用反射镜折叠光路,提高了相关器的集成度;4f结构也发展为2f结构,2f结构由透镜与输入面紧贴型[11]发展为无透镜型[12-14]。其中Fukuchi等[12-13]使用两个空间光调制器,采用折叠光路,实现2f无透镜的光学相关器,相关器中各元器件结构分离,对准精度要求高,未能实现平面集成化; Eckert等[11]提出将一个空间光调制器分为两半,实现2f无透镜光学相关器。目前空间光调制器存在空间带宽积小、传递信息量少、分辨率低的问题,且文献[ 11-13]中均未报道相关器对畸变目标识别的能力。Wu[15]基于空间光调制器提出一个2f光学相关器,可对旋转0°~60°和缩放-10%~10%的畸变目标实现不变识别,该相关器仍为同轴分离结构,并未实现集成化,且输出相关峰零频光干扰太大,不易判别。本课题组早期将4f光学相关器中的所有器件集成在一块基底材料上,利用二元光学微透镜代替了原有的体积较大的傅里叶透镜,后来又将共轴4f结构光学相关器设计为立体型的2f结构。不过上述的平面集成4f结构光学相关器体积依然较大,立体型2f结构光学相关器也很难实现集成化和微型化,同时也都存在对准精度要求高、稳定性差等问题。小型集成化和稳定优异的识别能力将是光学相关器发展的方向。

相关器系统中的滤波器对系统的识别能力起到至关重要的作用,性能优良的匹配滤波器对各种畸变目标均能输出尖锐的相关峰。优化折中综合鉴别函数滤波器(OTSDF)[16]综合多种滤波[17-20]的优势,可以使输出相关峰平均相关高度最大,提高畸变图像集整体相关峰高度;使平均相似度值尽可能小,从而提高滤波器的畸变容限;使平均相关能量尽量小,以便减少相关峰旁瓣,提高中频信息的通过率;使噪声方差尽量小,以便提高滤波器抗噪声特性,主要抑制输入高频噪声[21]。因此OTSDF可以识别输出的相关峰强度、相关峰形态、畸变容限和抗噪声等,对不同畸变目标能输出高质量且相对稳定的相关峰,这对畸变目标的准确识别和判断非常有利。

目前相关器依旧存在集成度低、对准精度要求高、畸变不变识别能力弱等问题,本文根据文献[ 22-27]设计了折反式2f相关器模型,该模型将4f结构同轴相关器改进为由平行平面组成的折反射式光路结构,将两个空间光调制器和CCD集成在一个平面的基底上,提高了相关器的集成度, 利用数字微透镜代替物理透镜,两个数字微透镜与输入物和滤波器相紧贴,分别加载于两个空间光调制器上,将原有的4f结构压缩为2f结构,有效地压缩了系统体积,系统体积仅为原有平面4f集成相关器的1/2。针对该相关器,设计了斜入射傅里叶变换数字微透镜,使待测目标在斜入射情况下依然能得到标准的傅里叶变换,并能消除斜入射带来的像差问题[28]。同时针对折反式2f相关器也设计了具有畸变不变识别能力的OTSDF,该相关器可实时编程,实时加载,结构尺寸更小,集成度更高,畸变不变识别能力更强。重点研究折反式2f相关器的设计理论,为集成化与微型化的光学相关器研制奠定了基础。

2 折反式2f系统光学相关器结构及理论分析

折反式2f系统光学相关器结构模型如图1所示,图中abh分别为相关器的长、宽、高,上表面为偏振反射平面,保证入射到空间光调制器上的光为特定偏振光,基底平面上集成了空间光调制器SLM1、空间光调制器SLM2和接收器件CCD,利用设计好的数字微透镜代替傅里叶变换物理透镜,将其与待识别目标和滤波器分别叠加,加载于SLM1和SLM2上,入射光斜入射进入相关器系统,最终在CCD上接收到相关信号。该相关器无物理透镜,结构紧凑,可较大程度缩短系统光程,减小结构体积,提高系统整体集成度和稳定性。

图 1. 折反式2f相关器结构图

Fig. 1. Structure chart of folding reflective 2f correlator

下载图片 查看所有图片

折反式2f相关器为倾斜入射的折叠反射式光路,为方便理论分析,其等效光路图可由图2表示,入射光束为斜入射平行光。

图 2. 折反式2f相关器等效光路图

Fig. 2. Equivalent optical path of folding reflective 2f correlator

下载图片 查看所有图片

针对折反式2f相关器系统设计斜入射傅里叶变换数字微透镜,数字微透镜通过合理地调整相位分布,可对待测目标进行傅里叶变换,在其后焦面得到空间频谱信息,根据傅里叶变换透镜要求[28],可推导出斜入射条件下纯相位型傅里叶变换透镜的透过率表达式,即

t(x',y')=C·exp[-λfx'2cos2α+y'2)],(1)

式中x'y'为空间坐标,α为入射角度,f为透镜焦距,λ为波长,C为透镜的振幅透过率,此处C为1。

入射光沿倾斜坐标系传输时,通过SLM1后的光场分布可以表示为

E1x'1,y'1=E0x'1,y'1exp-λf1x'12cos2α+y'12(2)

光束从SLM1后表面到达SLM2前表面的传播距离为L1,k为波数,在倾斜坐标系内,根据菲涅耳衍射公式[28],SLM2前表面的光场分布可以表示为

E2x'2,y'2=exp(ikL1)L1expx'22cos2α+y'22λL1E0x'1,y'1×exp-2x'1x'2cos2α+y'1y'2λL1dx'1dy'1,(3)

即在SLM2前表面得到输入目标的傅里叶变换,令光束通过SLM2,即经过匹配滤波器与透镜后,在SLM2的后表面的光场分布可以表示为

E3x'3,y'3=E2x'2,y'2·Hx'2,y'2·tx'2,y'2,(4)

式中Hx'2,y'2为滤波函数, tx'2,y'2为透镜的透射率。

根据菲涅耳衍射公式,输出面(CCD接收面)的光场分布可表示为

Ex',y'=expikD2/cosαD2/cosα·exp(ikL1)L1expx'22cos2α+y'22λL1FE0x'1,y'1·Hx'2,y'2×exp-λL2x'22cos2α+y'22expiπcosαx'cosα-x'2cosα2+y'-y'22λD2dx'2dy'2,5

式中D2=L1·cos α满足SLM1到SLM2的距离等于SLM2到CCD的距离且等于SLM1上透镜1的焦距时,SLM1与输出面CCD关于SLM2上的透镜形成共轭关系;当滤波函数Hx'2,y'2是输入目标谱函数F E0x'1,y'1的复共轭函数,即形成自相关运算时,(5)式可以化简为

Ex',y'=exp(ikL1)L12expx'2cos2α+y'2λL1·FE0x'1,y'12·λ2L12δx'cos2α,y',(6)

式中F{·}为傅里叶变换,δx'cos2α,y'函数在物理上表示一个会聚光斑,说明相关器对输入目标通过匹配滤波实现了光学自相关操作,在输出面得到一个脉冲函数,即在CCD接收面探测到一个明显的亮斑即相关峰。如果CCD接收到相关峰,即实现了对待识别目标的光学相关识别。从上述推导可知,折反式2f光学相关器能够实现光学相关识别过程,其结构需要同时满足:空间光调制器SLM2应处于透镜1的后焦面;透镜1和CCD关于透镜2成共轭关系;滤波器应为待识别目标的匹配滤波器;空间光调制器SLM1到空间光调制器SLM2的距离与空间光调制器SLM2到CCD的距离相等,并且该距离应等于透镜1的焦距,透镜1的焦距应是透镜2焦距的2倍。

为使后续实验方便,选取相关器的工作波长为632.8 nm,其中主要器件有CCD和纯相位反射式空间光调制器,空间光调制器分辨率为1080 pixel×1080 pixel,像素大小为8 μm×8 μm。

根据上述对相关器结构的理论分析及实验条件,为使其结构体积尽可能小,所设计的折反式2f系统相关器具体参数如表1所示,其中N为空间光调制器分辨率,P为空间光调制器像元大小,λ为工作波长,f1f2分别为加载于空间光调制器SLM1和SLM2上的数字微透镜焦距,abh分别为相关器的长、宽、高,α为入射角度。光学相关器结构近似为一个长方体,其长度和宽度依据实验所用的空间光调制器的大小决定,长度为a=5×N×P=43.2 mm,宽度为 b=N×P=8.64 mm,高度h由数字微透镜的焦距以及SLM1中心到SLM2中心的距离决定:

h=f12cosα,(7)

SLM1上的数字微透镜1的焦距大小等于SLM1到SLM2的距离,并且等于SLM2到CCD的距离,SLM1和CCD关于SLM2上的透镜2成共轭关系,则有

1f1+1f1=1f2(8)

由(8)式可以得到f1=2f2的焦距关系。为尽可能减小空间光调制器由于周期性衍射产生的杂散光干扰,根据透镜等效焦距条件[9],选取入射角度为6°,f1为340 mm,将角度和焦距参数代入(7)式得h为169.1 mm。光学相关器系统体积经计算为:V=a×b×h=63.1 cm3

表 1. 折反式2f相关器结构参数

Table 1. Folding reflective 2f correlator structure parameters

N /pixelP/μmλ/nmf1/mmf2/mmh/mmb/mma/mmα/(°)V/cm3
10808632.8340170169.18.6443.2663.1

查看所有表

3 折反式2f系统光学相关器仿真分析

相关器的识别能力主要由匹配滤波器的性能决定,畸变容限大的匹配滤波器能够使相关器的畸变不变识别范围增大,从而提升系统在实际应用中的稳定性和对畸变待识别目标的识别能力。针对折反式2f光学相关器设计了OTSDF,根据折反式2f相关器的理论分析,利用自编程序,对相关器进行模拟仿真,使用设计的OTSDF对各种畸变目标进行仿真识别,通过观察输出相关峰的CPI指标评判该相关器的识别性能。CPI指标是输出相关峰的最高强度值,它直接反映了输入目标频谱与滤波器相关程度的高低,是评价相关峰高度的重要指标,在实际应用中,可设定特定的相关峰高度作为阈值来评判目标的真伪性[29]

使用Elaine图片为例作为输入待识别目标。图3(a)为OTSDF识别缩放畸变目标输出相关峰CPI分布图, 训练生成OTSDF的图像集为缩放比例(65%,135%)间隔为5%的畸变目标,对缩放范围为(55%,145%)的目标进行仿真识别,从仿真输出的相关峰CPI变化可知,缩放比例逐渐增大时,系统输出的CPI值呈降低趋势,在放大比例超过145%时CPI的衰减较大,但在(55%,145%)范围内,CPI数值基本保持在0.7以上,相对缩放为100%(即没有缩放的原图)时CPI变化幅度较小。如图3(b)为OTSDF识别旋转畸变目标输出相关峰CPI分布图,训练生成OTSDF的图像集为旋转角度为(-35°,+35°)(负号代表左旋,正号代表右旋)间隔为5°的畸变目标,对原图旋转范围为(-45°,+45°)的目标进行仿真识别,从仿真输出的相关峰CPI变化可知,CPI数值变化在大部分内保持在0.75以上,在原目标发生(-45°,+45°)的畸变范围内输出的CPI相对原图输出相关峰衰减程度未达到50%。图3(c)为OTSDF识别缩放旋转同时存在的畸变目标输出相关峰CPI的分布图, 训练生成OTSDF的图像集为对原目标缩放比例为(70%,130%)间隔10%,同时旋转角度为(-30°,30°)间隔10°的畸变目标,对同时存在缩放(-40%,+40%)(负号代表缩小,正号代表放大)和旋转

图 3. (a)识别缩放畸变目标输出相关峰CPI变化曲线; (b)识别旋转畸变目标输出相关峰CPI变化曲线; (c)识别旋转缩放同时存在畸变目标输出相关峰CPI变化曲线

Fig. 3. (a) Curve of the CPI varies with the scaling object; (b) curve of the CPI varies with the rotation object; (c) curve of the CPI varies with the scaling and rotation object

下载图片 查看所有图片

(-40°,+40°)范围的畸变目标进行仿真识别,从识别输出的相关峰CPI分布可知,相关峰CPI的数值整体变化不大,基本都保持在0.8以上。仿真结果表明,使用折反式2f系统相关器设计的OTSDF对存在各种畸变的图像都具有稳定的畸变不变识别性能。

针对折反式2f光学相关器分别设计了待识别目标发生旋转、缩放、旋转缩放同时存在的3种畸变情况时的OTSDF滤波器,通过对目标的3种不同畸变情况的光学相关识别仿真,可以发现,应用不同OTSDF滤波器的折反式2f相关器对相应畸变目标具有相对稳定的相关峰输出。在实际应用中,可将原目标输出CPI的一半作为真假目标判别阈值,当输入物识别输出CPI小于原目标输出CPI的一半时可认为输入为假目标,若大于原目标输出CPI的一半,则认为输入为真目标。该模拟仿真表明,所设计的折反式2f光学相关器采用相应的OTSDF滤波器可有效提升相关器的畸变不变识别能力,这将为未来研制具有稳定识别能力和小型集成化的光学相关器奠定坚实基础。

4 结论

设计了一种折反式2f系统光学相关器,该相关器结构体积为63.1 cm3,仅为原有平面集成4f相关器的1/2,采用两个平行平面组成的折反射式光路结构,利用数字微透镜代替物理透镜,将原有的4f系统压缩为2f系统,具有体积小、无物理透镜、系统集成度高的优点。通过利用等效光路法对相关器进行理论分析,验证了折反式2f系统光学相关器的可行性,获得了相关器的结构设计条件和结构参数。设计了该相关器的OTSDF,通过自编程序,对相关器进行了光学识别模拟仿真,仿真结果显示,该相关器对缩放范围为(55%,145%)的畸变目标、旋转范围为(-45°,+45°)的畸变目标、同时存在缩放(-40%,+40%)和旋转(-40°,+40°)的畸变目标均能实现较好识别,各个畸变图像仿真输出的相关峰CPI相对原目标衰减程度均小于50%,表明所设计的折反式2f系统光学相关器对于各种畸变目标具有稳定的识别能力。根据目前相关器的结构模型和模拟仿真结果,计划下一步将搭建折反式2f系统光学相关器实验验证平台,对相关器的实际畸变不变识别能力进行实验研究。

参考文献

[1] Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 1964, 10(2): 139-145.

    Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 1964, 10(2): 139-145.

    Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 1964, 10(2): 139-145.

[2] Manzur T, Zeller J, Serati S. Optical correlator based target detection, recognition, classification, and tracking[J]. Applied Optics, 2012, 51(21): 4976-4983.

    Manzur T, Zeller J, Serati S. Optical correlator based target detection, recognition, classification, and tracking[J]. Applied Optics, 2012, 51(21): 4976-4983.

    Manzur T, Zeller J, Serati S. Optical correlator based target detection, recognition, classification, and tracking[J]. Applied Optics, 2012, 51(21): 4976-4983.

[3] Elbouz M, Alfalou A, Brosseau C, et al. Assessing the performance of a motion tracking system based on optical joint transform correlation[J]. Optics Communications, 2015, 349: 65-82.

    Elbouz M, Alfalou A, Brosseau C, et al. Assessing the performance of a motion tracking system based on optical joint transform correlation[J]. Optics Communications, 2015, 349: 65-82.

    Elbouz M, Alfalou A, Brosseau C, et al. Assessing the performance of a motion tracking system based on optical joint transform correlation[J]. Optics Communications, 2015, 349: 65-82.

[4] SolusD, OvsenikL, TuránJ. Optical correlator in vertical traffic signs inventory system[C]. IEEE 13th International Scientific Conference on Informatics, 2016: 15701280.

    SolusD, OvsenikL, TuránJ. Optical correlator in vertical traffic signs inventory system[C]. IEEE 13th International Scientific Conference on Informatics, 2016: 15701280.

    SolusD, OvsenikL, TuránJ. Optical correlator in vertical traffic signs inventory system[C]. IEEE 13th International Scientific Conference on Informatics, 2016: 15701280.

[5] Harasthy T, Ovsenik L, Turán J. Current summary of the practical using of optical correlators[J]. Acta Electrotechnica et Informatica, 2013, 12(4): 30-38.

    Harasthy T, Ovsenik L, Turán J. Current summary of the practical using of optical correlators[J]. Acta Electrotechnica et Informatica, 2013, 12(4): 30-38.

    Harasthy T, Ovsenik L, Turán J. Current summary of the practical using of optical correlators[J]. Acta Electrotechnica et Informatica, 2013, 12(4): 30-38.

[6] Callaghan MJ, Perlmutter SH, WoltB. Single-chip correlator implementation for PCI-bus personal computers[C]. SPIE, 2000, 4043: 48- 58.

    Callaghan MJ, Perlmutter SH, WoltB. Single-chip correlator implementation for PCI-bus personal computers[C]. SPIE, 2000, 4043: 48- 58.

    Callaghan MJ, Perlmutter SH, WoltB. Single-chip correlator implementation for PCI-bus personal computers[C]. SPIE, 2000, 4043: 48- 58.

[7] 刘文耀, 张以谟, 董世洪, 等. 集成化光学相关器及匹配滤波器的优化设计[J]. 光学学报, 2000, 20(12): 1680-1683.

    刘文耀, 张以谟, 董世洪, 等. 集成化光学相关器及匹配滤波器的优化设计[J]. 光学学报, 2000, 20(12): 1680-1683.

    刘文耀, 张以谟, 董世洪, 等. 集成化光学相关器及匹配滤波器的优化设计[J]. 光学学报, 2000, 20(12): 1680-1683.

    Liu W Y, Zhang Y M, Dong S H, et al. Novel compact optical correlator and optimum design of match spatial filter for pattern recognition[J]. Acta Optica Sinica, 2000, 20(12): 1680-1683.

    Liu W Y, Zhang Y M, Dong S H, et al. Novel compact optical correlator and optimum design of match spatial filter for pattern recognition[J]. Acta Optica Sinica, 2000, 20(12): 1680-1683.

    Liu W Y, Zhang Y M, Dong S H, et al. Novel compact optical correlator and optimum design of match spatial filter for pattern recognition[J]. Acta Optica Sinica, 2000, 20(12): 1680-1683.

[8] Eckert W. Compact planar-integrated optical correlator for spatially incoherent signals[J]. Applied Optics, 2000, 39(5): 759-765.

    Eckert W. Compact planar-integrated optical correlator for spatially incoherent signals[J]. Applied Optics, 2000, 39(5): 759-765.

    Eckert W. Compact planar-integrated optical correlator for spatially incoherent signals[J]. Applied Optics, 2000, 39(5): 759-765.

[9] 刘加勇, 徐平, 徐海东, 等. 新型平面集成光学相关器设计与分析[J]. 光学学报, 2008, 28(9): 1735-1739.

    刘加勇, 徐平, 徐海东, 等. 新型平面集成光学相关器设计与分析[J]. 光学学报, 2008, 28(9): 1735-1739.

    刘加勇, 徐平, 徐海东, 等. 新型平面集成光学相关器设计与分析[J]. 光学学报, 2008, 28(9): 1735-1739.

    Liu J Y, Xu P, Xu H D, et al. Design and analysis of novel planar integrated optical correlator[J]. Acta Optica Sinica, 2008, 28(9): 1735-1739.

    Liu J Y, Xu P, Xu H D, et al. Design and analysis of novel planar integrated optical correlator[J]. Acta Optica Sinica, 2008, 28(9): 1735-1739.

    Liu J Y, Xu P, Xu H D, et al. Design and analysis of novel planar integrated optical correlator[J]. Acta Optica Sinica, 2008, 28(9): 1735-1739.

[10] 徐海东, 徐平, 亓森林, 等. 基于4f结构平面集成相关器系统优化[J]. 光学学报, 2010, 30(4): 1002-1008.

    徐海东, 徐平, 亓森林, 等. 基于4f结构平面集成相关器系统优化[J]. 光学学报, 2010, 30(4): 1002-1008.

    徐海东, 徐平, 亓森林, 等. 基于4f结构平面集成相关器系统优化[J]. 光学学报, 2010, 30(4): 1002-1008.

    Xu H D, Xu P, Qi S L, et al. System optimization of 4f-based planar integrated hybrid optoelectronic correlator[J]. Acta Optica Sinica, 2010, 30(4): 1002-1008.

    Xu H D, Xu P, Qi S L, et al. System optimization of 4f-based planar integrated hybrid optoelectronic correlator[J]. Acta Optica Sinica, 2010, 30(4): 1002-1008.

    Xu H D, Xu P, Qi S L, et al. System optimization of 4f-based planar integrated hybrid optoelectronic correlator[J]. Acta Optica Sinica, 2010, 30(4): 1002-1008.

[11] Eckert W. Compact discrete correlator with improved design[J]. Optics Communications, 2000, 186(1): 83-86.

    Eckert W. Compact discrete correlator with improved design[J]. Optics Communications, 2000, 186(1): 83-86.

    Eckert W. Compact discrete correlator with improved design[J]. Optics Communications, 2000, 186(1): 83-86.

[12] Fukuchi N. Lensless Vanderlugt optical correlator using two phase-only spatial light modulators[J]. Chinese Optics Letters, 2009, 7(12): 1131-1133.

    Fukuchi N. Lensless Vanderlugt optical correlator using two phase-only spatial light modulators[J]. Chinese Optics Letters, 2009, 7(12): 1131-1133.

    Fukuchi N. Lensless Vanderlugt optical correlator using two phase-only spatial light modulators[J]. Chinese Optics Letters, 2009, 7(12): 1131-1133.

[13] Zeng X, Inoue T, Fukuchi N, et al. Parallel lensless optical correlator based on two phase-only spatial light modulators[J]. Optics Express, 2011, 19(13): 12594-12604.

    Zeng X, Inoue T, Fukuchi N, et al. Parallel lensless optical correlator based on two phase-only spatial light modulators[J]. Optics Express, 2011, 19(13): 12594-12604.

    Zeng X, Inoue T, Fukuchi N, et al. Parallel lensless optical correlator based on two phase-only spatial light modulators[J]. Optics Express, 2011, 19(13): 12594-12604.

[14] Zeng X, Bai J, Hou C, et al. Compact optical correlator based on one phase-only spatial light modulator[J]. Optics Letters, 2011, 36(8): 1383-1385.

    Zeng X, Bai J, Hou C, et al. Compact optical correlator based on one phase-only spatial light modulator[J]. Optics Letters, 2011, 36(8): 1383-1385.

    Zeng X, Bai J, Hou C, et al. Compact optical correlator based on one phase-only spatial light modulator[J]. Optics Letters, 2011, 36(8): 1383-1385.

[15] Wu W. Research of 2f hybrid photoelectric matched filtering correlation recognition[J]. Optical Technique, 2010, 36(1): 39-42.

    Wu W. Research of 2f hybrid photoelectric matched filtering correlation recognition[J]. Optical Technique, 2010, 36(1): 39-42.

    Wu W. Research of 2f hybrid photoelectric matched filtering correlation recognition[J]. Optical Technique, 2010, 36(1): 39-42.

[16] Refregier P. Optimal trade-off filters for noise robustness, sharpness of the correlation peak and Horner efficiency[J]. Optics Letters, 1991, 16(11): 829-831.

    Refregier P. Optimal trade-off filters for noise robustness, sharpness of the correlation peak and Horner efficiency[J]. Optics Letters, 1991, 16(11): 829-831.

    Refregier P. Optimal trade-off filters for noise robustness, sharpness of the correlation peak and Horner efficiency[J]. Optics Letters, 1991, 16(11): 829-831.

[17] Hester C F, Casasent D. Multivariant technique for multiclass pattern recognition[J]. Applied Optics, 1980, 19(11): 1758-1761.

    Hester C F, Casasent D. Multivariant technique for multiclass pattern recognition[J]. Applied Optics, 1980, 19(11): 1758-1761.

    Hester C F, Casasent D. Multivariant technique for multiclass pattern recognition[J]. Applied Optics, 1980, 19(11): 1758-1761.

[18] Kumar B. Minimum variance synthetic discriminant functions[J]. Journal of the Optical Society of America A, 1986, 3(10): 1579-1584.

    Kumar B. Minimum variance synthetic discriminant functions[J]. Journal of the Optical Society of America A, 1986, 3(10): 1579-1584.

    Kumar B. Minimum variance synthetic discriminant functions[J]. Journal of the Optical Society of America A, 1986, 3(10): 1579-1584.

[19] Mahalanobis A, Kumar B, Casasent D. Minimum average correlation energy filters[J]. Applied Optics, 1987, 26(17): 3633-3640.

    Mahalanobis A, Kumar B, Casasent D. Minimum average correlation energy filters[J]. Applied Optics, 1987, 26(17): 3633-3640.

    Mahalanobis A, Kumar B, Casasent D. Minimum average correlation energy filters[J]. Applied Optics, 1987, 26(17): 3633-3640.

[20] Mahalanobis A, Kumar B. Unconstrained correlation filters[J]. Applied Optics, 1994, 33(17): 3751-3759.

    Mahalanobis A, Kumar B. Unconstrained correlation filters[J]. Applied Optics, 1994, 33(17): 3751-3759.

    Mahalanobis A, Kumar B. Unconstrained correlation filters[J]. Applied Optics, 1994, 33(17): 3751-3759.

[21] Wu W, Zhou J P, Wang X S, et al. Design of matched filters for image correlation recognition of distortion targets[J]. Journal of Applied Optics, 2009, 30(1): 11-15.

    Wu W, Zhou J P, Wang X S, et al. Design of matched filters for image correlation recognition of distortion targets[J]. Journal of Applied Optics, 2009, 30(1): 11-15.

    Wu W, Zhou J P, Wang X S, et al. Design of matched filters for image correlation recognition of distortion targets[J]. Journal of Applied Optics, 2009, 30(1): 11-15.

[22] Xu P, Hong C, Cheng G, et al. Planar optical correlators integrated with binary optical lens[J]. Optics Express, 2015, 23(5): 6773-6779.

    Xu P, Hong C, Cheng G, et al. Planar optical correlators integrated with binary optical lens[J]. Optics Express, 2015, 23(5): 6773-6779.

    Xu P, Hong C, Cheng G, et al. Planar optical correlators integrated with binary optical lens[J]. Optics Express, 2015, 23(5): 6773-6779.

[23] Xu P, Yuan X, Huang H X, et al. Research on design of tri-color shift device[J]. Nanoscale Research Letters, 2016, 11(1): 485.

    Xu P, Yuan X, Huang H X, et al. Research on design of tri-color shift device[J]. Nanoscale Research Letters, 2016, 11(1): 485.

    Xu P, Yuan X, Huang H X, et al. Research on design of tri-color shift device[J]. Nanoscale Research Letters, 2016, 11(1): 485.

[24] Xu P, Huang Y Y, Su Z J, et al. Research of micro-prism distribution on the bottom surface of the small-size integrated light guide plate[J]. Optics Express, 2015, 23(4): 4887-4896.

    Xu P, Huang Y Y, Su Z J, et al. Research of micro-prism distribution on the bottom surface of the small-size integrated light guide plate[J]. Optics Express, 2015, 23(4): 4887-4896.

    Xu P, Huang Y Y, Su Z J, et al. Research of micro-prism distribution on the bottom surface of the small-size integrated light guide plate[J]. Optics Express, 2015, 23(4): 4887-4896.

[25] Huang H X, Ruan S C, Yang T, et al. Novel even beam splitters based on subwavelength binary simple periodic rectangular structure[J]. Nano-Micro Letters, 2015, 7(2): 177-182.

    Huang H X, Ruan S C, Yang T, et al. Novel even beam splitters based on subwavelength binary simple periodic rectangular structure[J]. Nano-Micro Letters, 2015, 7(2): 177-182.

    Huang H X, Ruan S C, Yang T, et al. Novel even beam splitters based on subwavelength binary simple periodic rectangular structure[J]. Nano-Micro Letters, 2015, 7(2): 177-182.

[26] Xu P, Huang Y Y, Zhang X L, et al. Integrated micro-optical light guide plate[J]. Optics Express, 2013, 21(17): 20159-20170.

    Xu P, Huang Y Y, Zhang X L, et al. Integrated micro-optical light guide plate[J]. Optics Express, 2013, 21(17): 20159-20170.

    Xu P, Huang Y Y, Zhang X L, et al. Integrated micro-optical light guide plate[J]. Optics Express, 2013, 21(17): 20159-20170.

[27] Xu P, Huang H X, Wang K, et al. Realization of optical perfect shuffle with microoptical array element[J]. Optics Express, 2007, 15(3): 809-816.

    Xu P, Huang H X, Wang K, et al. Realization of optical perfect shuffle with microoptical array element[J]. Optics Express, 2007, 15(3): 809-816.

    Xu P, Huang H X, Wang K, et al. Realization of optical perfect shuffle with microoptical array element[J]. Optics Express, 2007, 15(3): 809-816.

[28] Testorf M, Jahns J. Paraxial theory of planar integrated systems[J]. Journal of the Optical Society of America A, 1997, 14(7): 1569-1575.

    Testorf M, Jahns J. Paraxial theory of planar integrated systems[J]. Journal of the Optical Society of America A, 1997, 14(7): 1569-1575.

    Testorf M, Jahns J. Paraxial theory of planar integrated systems[J]. Journal of the Optical Society of America A, 1997, 14(7): 1569-1575.

[29] 周亮, 喻珺, 杨拓, 等. 匹配滤波识别相关峰的分析与实验判别[J]. 光学学报, 2016, 36(9): 0907001.

    周亮, 喻珺, 杨拓, 等. 匹配滤波识别相关峰的分析与实验判别[J]. 光学学报, 2016, 36(9): 0907001.

    周亮, 喻珺, 杨拓, 等. 匹配滤波识别相关峰的分析与实验判别[J]. 光学学报, 2016, 36(9): 0907001.

    Zhou L, Yu J, Yang T, et al. Analysis and experimental determination for matched filtering recognition of correlation peak[J]. Acta Optica Sinica, 2016, 36(9): 0907001.

    Zhou L, Yu J, Yang T, et al. Analysis and experimental determination for matched filtering recognition of correlation peak[J]. Acta Optica Sinica, 2016, 36(9): 0907001.

    Zhou L, Yu J, Yang T, et al. Analysis and experimental determination for matched filtering recognition of correlation peak[J]. Acta Optica Sinica, 2016, 36(9): 0907001.

杨拓, 徐平, 周亮, 喻珺, 李雄超, 黄海漩. 折反式2f系统光学相关器的研究[J]. 光学学报, 2018, 38(1): 0107001. Tuo Yang, Ping Xu, Liang Zhou, Jun Yu, Xiongchao Li, Haixuan Huang. Folding Reflective 2f System Optical Correlator[J]. Acta Optica Sinica, 2018, 38(1): 0107001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!