红外与毫米波学报, 2017, 36 (5): 519, 网络出版: 2017-11-21   

用于太赫兹空间传输的透镜设计及验证

Lens design and verification used for terahertz space transmission
作者单位
中国科学院上海技术物理研究所 中科院空间主动光电技术重点实验室,上海 200083
摘要
太赫兹激光作为大角度发散的高斯波束不能简化为平面波或球面波.经典电磁理论和ABCD法则传输理论建模显示: 正透镜实现太赫兹激光束的会聚, 会聚后其像距明显小于透镜的焦距;焦距和太赫兹激光光束波前半径相匹配的负透镜可以实现太赫兹激光束的准直.实验证实f′=-188, 的负透镜位于与太赫兹激光光束波前半径相匹配的位置时, 即z=100 mm, 太赫兹激光的发散角从6°提高到0.1°,20 m传输实验中, 负透镜准直探测方案比正透镜准直探测方案更加简单有效.
Abstract
Terahertz beams are a kind of Gaussian beam with a big divergence angle and its wave front cannot be simplified to a plane or a spherical wave. All the theoretical derivations from the classical electromagnetic theory and ABCD laws support the following conclusions: firstly, a positive lens converges the terahertz beam in front of the focal plane instead of on the focal plane; secondly, a negative lens which matches the radius of the Gaussian beam’s wave front is more appropriate for terahertz beam collimation. Experiments show that a negative lens with f′=-188 mm at the matching position, z=100 mm, can improve the terahertz beam collimation from 6° to 0.1°. And 20-m terahertz space transmission was realized with a very simple optical scheme.
参考文献

[1] Ito H, Nakajima F, Furuta T, et al. Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes[J]. Semiconductor Science & Technology, 2005,20(7):S191.

[2] Mcgowan R W, Gallot G, Grischkowsky D. Propagation of ultrawideband short pulses of Thz radiation through submillimeter-diameter circular waveguides[J]. Opt. Lett. 1999,24(20), 1431-1433.

[3] Sankin VI, Andrianov AV, Zakhar`InAO, Petrov AG et al. Terahertz electroluminescence from 6Н-SiC structures with natural superlattice[J]. Applied Physics Letters,2012,100(11):111109-111109-4.

[4] Choi M K,Taylor K, Bettermann, et al. Broadband 10-300 GHz stimulus-response sensing for chemical and biological entities [J]. Phys. Med. Biol.2002, 47(21):3777-3787.

[5] Willenberg H W, Dohler G H, Faist J, Intersubband gain in a bloch oscillator and quantum cascade laser [J]. Phys. Rev. B.2002, 67, 085315.

[6] Rochat M, Ajili L, Willenberg H , et al,Low-threshold terahertz quantum-cascade lasers[J].Appl. Phys. Lett.2002, 81(8), 1381-1383.

[7] Williams B S, Callebaut H, Kumar S, et al, 3.4-thz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation [J]. Appl. Phys. Lett. 2003,82(7): 1015-1017.

[8] Sachs R and Roskos H G. Mode calculations for a terahertz quantum cascade laser[J]. Opt. Express, 2004,12(10): 2062-2069.

[9] Vander Weide D W , Murakowski J, Keilmann F. Gas-absorption spectroscopy with electronic terahertz techniques [J]. IEEE Trans. Microw. Theory Tech. 1998,48(4): 740-743.

[10] Abbas A, Treizebre A, Supiot P, et al. Cold plasma functionalized TeraHertz BioMEMS for enzyme reaction analysis[J]. Biosensors & Bioelectronics,2009,25(1):154-160.

[11] Orazio Svelto, David C. Hanna “Principles of Lasers, Fifth Edition[M]. Plenum Publishing Corporation, 1988, 150-175.

[12] Goodman J, Huggins E. Introduction to Fourier Optics, Third Edition[M]. Robert and Company Publishers, 2005, 70-85.

杨秋杰, 何志平, 舒嵘. 用于太赫兹空间传输的透镜设计及验证[J]. 红外与毫米波学报, 2017, 36(5): 519. YANG Qiu-Jie, He Zhi-Ping, SHU Rong. Lens design and verification used for terahertz space transmission[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 519.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!