激光与光电子学进展, 2017, 54 (12): 120001, 网络出版: 2017-12-11   

相干脉冲堆积——超越啁啾脉冲放大的新技术 下载: 2014次

Coherent Pulse Stacking—An Innovation Beyond the Chirped Pulse Amplification
作者单位
北京大学信息科学技术学院区域光纤通信网与新型光通信系统国家重点实验室, 北京 100871
摘要
无论是在固体还是在光纤放大器中, 飞秒的脉冲能量都受到热效应和非线性效应的制约。即使是啁啾脉冲放大(CPA), 也难以超越高峰值功率和平均功率的限制。脉冲空间和时间分割放大-合成, 有可能打破僵局, 产生高重复频率和高脉冲能量; 而将高功率光纤放大器中的脉冲进行相干堆积, 有可能超越啁啾脉冲放大, 得到高于其若干数量级的脉冲能量, 同时保持高重复频率。
Abstract
Either in the solid state or in the fiber amplifier, femtosecond pulse energy is limited by the thermal and nonlinear effects. Chirped pulse amplification (CPA) solely cannot break the barrier of high peak power and average power. Coherent pulse combination, such as the spatially or temporally divided pulse amplification, has the potential to produce higher pulse energies at high repetition rate. Furthermore, coherent pulse stacking from high repetition rate, high power fiber amplifier may even surpass the chirped pulse amplification and produce many order higher pulse energy with high repetition frequency.
参考文献

[1] Fattahi H. Third-generation femtosecond technology[J]. Optica, 2014, 1(1): 45-63.

[2] Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Physics Today, 2009, 62(3): 44-49.

[3] Soulard R, Quinn M N, Tajima T, et al. ICAN: a novel laser architecture for space debris removal[J]. Acta Astronautica, 2014, 105(1): 192-200.

[4] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 2011, 5: 655-663.

[5] Wu Y, Cunningham E, Zang H, et al. Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser[J]. Applied Physics Letters, 2013, 102(20): 201104.

[6] Fujioka S, Arikawa Y, Kojima S, et al. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field[J]. Physics of Plasmas, 2016, 23(5): 056308.

[7] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light Science & Applications, 2014, 3: e211.

[8] Leemans W P, Duarte R, Esarey E, et al. The Berkeley lab laser accelerator (BELLA): a 10 GeV laser plasma accelerator[C]. AIP Conference Proceedings, 2010, 1299: 3-11.

[9] Chu Y, Gan Z, Liang X, et al. High-energy large-aperture Ti: sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 2015, 40(21): 5011-5014.

[10] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science Engineering, 2015, 3(1): 5-18.

[11] Chvykov V, Cao H, Nagymihaly R, et al. High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping[J]. Optics Letters, 2016, 41(13): 3017-3020.

[12] Smr M, Muík J, Novák O, et al. Progress in kW-class picosecond thin-disk lasers development at the HiLASE[C]. SPIE, 2016, 9726: 972617.

[13] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260.

[14] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

[15] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285.

[16] Bellanger C, Toulon B, Primot J, et al. Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining[J]. Optics Letters, 2010, 35(23): 3931-3933.

[17] Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Optics Express, 2011, 19(25): 25379-25387.

[18] Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24): 25403-25414.

[19] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7: 258-261.

[20] Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439-3442.

[21] 于海龙. 高功率飞秒光纤激光及其相干合成技术研究[D]. 长沙: 国防科学技术大学, 2016.

    Yu Hailong. Study on high power femtosecond fiber laser and coherent combination technology[D]. Changsha: National University of Defense Technology, 2016.

[22] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871-873.

[23] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Optics Letters, 2013, 38(2): 106-108.

[24] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 2014, 39(4): 1049-1052.

[25] Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346.

[26] Barthélémy A, Desfargesberthelemot A, Bouwmans G, et al. Spectral division amplification of a 40 nm bandwidth in a multicore Yb doped fiber and femtosecond pulse synthesis with in-fiber delay line[J]. Optics Express, 2015, 23(21): 27448-27456.

[27] Wilcox R, Dahlen D, Sano T. Femtosecond beam combination using diffractive optic pairs[C]. CLEO2017, 2017: SM4I.2.

[28] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462.

[29] Breitkopf S, Wunderlich S, Eidam T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10 MHz stack and dump cavity[J]. Applied Physics B, 2016, 122(12): 297.

[30] Lilienfein N, Holzberger S, Pupeza I. Ultrafast optomechanical pulse picking[J]. Applied Physics B, 2017, 123(1): 47.

[31] Ruppe J, Chen S, Zhou T, et al. Coherent pulse stacking extension of CPA to 9 ns effectively-long stretched pulse duration[J]. CLEO2016, 2016: SM4I.2.

[32] Ruppe J, Chen S, Zhou T, et al. Extending CPA by at least an order of magnitude using coherent pulse stacking amplification[C]. 7th Conference of the International Committee on Ultrahigh Intensity Lasers, 2016.

[33] Ruppe J, Chen S, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 pulses in a 4+1 GTI resonator sequence[C]. Advanced Solid State Lasers, 2016: AM4A.6.

[34] Galvanauskas A. Coherent pulse stacking amplification extending chirped pulse amplification by orders of magnitude[C]. CLEO2017, 2017: SM4I.1.

张志刚. 相干脉冲堆积——超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001. Zhang Zhigang. Coherent Pulse Stacking—An Innovation Beyond the Chirped Pulse Amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!